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i EVALUATION

;j This is the final report on Contract F19628-77-C-0107. It covers
research and experiménts performed during the period 6 January 1977 to
5 January 1979. The objective of the work was to increase the radiation
intensity near the horizon of a magnetic 1ine source, or a magnetic line
dipole, located on a uniform impedance surface patch which partly covers
an electrically large perfectly conducting convex cylinder. Various
methods for analyzing and computing the radiation patterns of such magnetic
sources are described and the near and fa; fields can be predicted fairly
well.
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CHAPTER I
INTRODUCTION

An approximate, asymptotic high frequency analysis of the
radiation patterns is presented for a two-dimensional (2-D) mag-
netic line source or a magnetic line dipole source located on a
uniform impedance surface patch which partly covers an electrically
large, perfectly conducting convex cylinder as in Figure 1. The
purpose of this work is to assess the effects of such an impedance
loading on the radiation patterns with a view towards being able
to increase the pattern level in the vicinity of the horizon.

The latter application is of interest in the design of a crossed-
slot type fuselage mounted airborne antenna for satellite communi-
cation purposes. On a large, perfectly conducting convex cylinder,
a circumferential slot typically radiates a field at the horizon :
(or shadow boundary) which is roughly 20 dB below that of an axial H
slot. In the crossed siot application, it is therefore desirable 1
to enhance the fields of a circumferential slot near the horizon
by impedance loading, while at the same time not significantly !
‘ degrading the performance of the axial slot in the crossed slot i
antenna configuration.

2

In the present method of analysis, the impedance surface is
represented by an equivalent aperture in an otherwise perfectly
conducting convex cylinder. Approximate, asymptotic expressions
for the "equivalent-aperture distribution" corresponding to the
surface currents excited by a source on the impedance patch are
developed for both the magnetic line source and the magnetic line
dipole cases. A magnetic line source simulates a thin axial slot;
whereas, a magnetic line dipole simulates a thin circumferential
type slot. The asymptotic expressions obtained for the surface
currents on the impedance patch remain valid in the vicinity of
the source at Q'. The radiation pattern of the configuration in
Figure 1 is then found in a straightforward fashion by numerically
integrating this current distribution in conjunction with an ac-
curate, asymptotic form of the perfectly conducting, convex cyl-
inder Green's function as given by Pathak and Kouyoumjian[l]; a
siightly improved version of this Green's function also appears
in a report by Pathak and Huang[2]. As a result of employing this
special cylinder Green's function rather than the usual free space
Green's function, one needs to integrate the currents only over
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the impedance surface patch. This method of analysis will be re-
ferred to as the surface current integration method (SCIM). Radi-
ation pattern calculations based on this SCIM are found to compare
quite well with those obtained via a numerical moment method type
solution, a previous GTD solution for those impedances which sup-
port an Ell1iot mode,and also with some presently available experi-
mental results. A moderately large increase in the radiation
intensity can be obtained in the vicinity of the horizon for cyl-
inders loaded by an impedance surface which support Elliot type
modes[3]. An Elliot mode field is one which propagates on a curved
impedance boundary with negligible leakage, and is therefore usually
the dominant contributor to the field on such a surface; further-
more, as the curvature of the surface vanishes, it reduces to the
usual "bound" surface wave mode on a planar impedance surface.

It is noted that an Elliot mode can be excited by a magnetic line
source if the surface impedance is inductive; whereas, it can be
excited by a magnetic line dipole source if the surface impedance
is capacitive.

IMPEDANCE SOURCE
PATCH OBSERVATION POINT
\ / ON IMPEDANCE PATCH
Q.

Q'Q, =L, (ARC LENGTH)
—_—
Q Qp=L, (ARC LENGTH)

L (LENGTH OF IMPEDANCE
PATCH) =L, + L,

PERFECTLY
CONDUCTING

PORTION OF THE

CONVEX CYLINDER

Figure 1--An illustration of an antenna on a perfectly conducting
convex cylinder which is partly covered
by an impedance patch.

This present work represents an important extension and gen-
eralization of some of the earlier work[2,4,5]. The earlier ap-
proach by Pathak [4 ] which led to a preliminary, asymptotic solution,
for this problem could be designated as the diffraction coefficient
or the geometrical theory of diffraction approach (GTD). A second
approach presented by Pathak and Huang [2 ] which is based on the
numerical solution of the integral equation for this problem is
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was based on the moment method with some important simplifications

resulting from the use of uniform and accurate GTD approximations

for the excitation and the kernel of the integral equation. This

MM-GTD solution[2] is employed primarily as an independent check

on the GTD solution B]; it also serves as a check on the SCIM solu-

tion. The MM-GTD solution in [2}, which employs the cylinder sur-

face Green's function as a kernel, is rather well suited for the

TE_ case. However, one needs to be careful in employing it to

the TM_ case because the kernel is far more singular than for the :
TE ca§e, and it then appears to be necessary to properly incorpo- !
rate the edge conditions on the fields at Q1 and Q, in order to

obtain a completely stable numerical result. whilg some initial

success has been obtained for the TM_ case, further work is neces-

sary to complete the MM-GTD treatment more satisfactorily for this

case. Preliminary modifications and extensions of this work in

[2] and [4] were reported later by Pathak and Ersoy [5] in which

the SCIM procedure was outlined and a study of the asymptotic ap-

roximations for the surface currents to be employed in this SCIM

procedure was initiated.

i

!, designated as the MM-GTD approach 2]. This numerical solution
%

I

b

f

The work based on the GTD approach in [4] is an extension i
of the GTD solution of Hwang, Kouyoumjian and Pathak[6] for anal- ¥
yzing the radiation by a magnetic 1ine source on a perfectly con- b3
ducting box that is partly covered by a finite dielectric panel »

‘ (over the face on which the source is located). In contrast to
the work of Hwang et al.[6], a GTD analysis of the curved geometry
in Figure 1 requires the solutions to more and different canonical
problems, because of the complexity introduced into the analysis
by the presence of the curvature. In this context, it is noted

: that the GTD solutions including the one in [1] and [4] are based

i on the local properties of wave propagation and diffraction at

i high frequencies, and can hence be "built up" from the asymptotic
solutions to appropriate canonical problems which accurately model
the local regions from where excitations or diffractions of the
fields take place. For example, the field at a far zone observa-

! tion point which is generated by the source at Q' is obtained by ;
summing up the fields which propagate along the direct ray path, E
from the source to the field point as well as along the various 3
diffracted ray paths such as those emanating from the ends of the ;
patches at Q, and Q,, and also those that are shed tangentially
after creepi*g arouhd the back of the cylinder upon being launched
from Q, and Q,. The ray picture of the GTD as illustrated in Figure
2 is piysicalqy appealing as it provides an insight into the nature

of the radiation and diffraction mechanisms. The GTD analysis[4]
was restricted to an impedance surface which would support an Elliot
mode and for which this mode alone would be the dominant contributor
to the fields diffracted from the edges of the impedance patch

;t ?5 and Qz. The other component of the surface field (i.e.,

eside

s the Elliot mode field) diffracts not only from the edges




P(IN DEEP LIT REGION OF Q')

SURFACE IMPEDANCE

Z,#0 OVER THE
SECTION Q,Q'Q, ;

2, 0 OVER THE
REMAINING PORTION
Q T,T,Q,0F THE  °
CIRCULAR CYLINDER
OF RADIUS =a

{IN DEEP SHADOW
REGION OF Q')

(b)

Figure 2--Rays and shadow boundaries associated with the
GTD solution of [4].




of the impedance patch but also from the impedance surface via

a continual leakage along the ray propagation path from Q' to Q

or Q,. If this leakage is significant, then the diffraction frsm
just®the E11iot mode may not provide a sufficiently accurate radi-
ation pattern near the horizon. One expects this leakage effect,
which is partly governed by the type of impedance, to become im-
portant as the cylinder size decreases. Furthermore, if the type

of impedance chosen does not support an Elliot mode field, then
this other field component ij all that is left. For the latter
case, the GTD analysis of [4] must be substantially modified to
obtain a uniform diffraction coefficient for the diffraction from
the edges of the patch, of this component of the field which con-
tinually leaks (or sheds) energy from the impedance surface. A
uniform asymptotic solution of an appropriate canonical problem
which would lead to such a uniform diffraction coefficient is some-
what complicated and is not attempted at the present time. The
GTD technique presented in [4] is thus useful for sufficiently
large cylinders with a sufficiently long impedance patch on which
an E1liot mode can establish itself. It is noted that a pure Elliot
mode is established beyond a certain minimum Taunching distance on
the impedance patch. For more general situations; namely, for

the case when the cylinders are only moderately large and for im-
pedance surfaces which are not necessarily restricted to those

that can support an Elliot mode field, the approach based on the
SCIM appears to lead to a relatively simpler and sufficiently prac-
tical method of solution for the problem in Figure 1. Furthermore,
this SCIM solution is constructed without essentially losing much
of the physical insight provided by GTD solutions. Also, the SCIM
can take into account impedance surface patches which are reasonably
small; more will be said about this in Chapter III. It is noted
that while the SCIM can handle more general situations than the
previous GTD solution, it is also restricted at this time as is

the latter solution to an imp~dance surface which is uniform (or

at the most one which is very slowly varying if it is non-uniform).
The MM-GTD procedure[2] can tak: non-uniform impedance into con-
sideration quite easily; however, it does not provide the physical
insight afforded by the SCIM,

It may e mentioned that Wait[7-12] has done considerable
work on the as,mptotic calculation of the surface fields which
are diffracted past an impedance discontinuity as at Q, and Q
of Figure 1. Indeed, some of his work[7,9,12] has beea helpfal
in the asymptotic analysis of the currents which exist on a curved
impedance boundary. Nevertheless, Wait's results have not been
directly applied here, as they do not furnish surface current repre-
sentations which are suitable in the construction of an approximate
solution based in particular on the SCIM. Additional comments
comparing Wait's results with the ones developed here are presented
in Section IIB. Also, Shapira, Felsen and Hessel[13,14] have anal-
yzed the radiation from an active slot in an array of slots on

e v 3y .‘
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a perfectly conducting convex cylinder via asymptotic techniques;
they employ a local periodic structure (LPS) model in which the
array is viewed as an effective surface impedance. They also in-
clude the edge effects arising from finiteness of the array. It
is noted that the surface fields obtained in the LPS method of
(13] is not valid in the close neighborhood of the source; whereas,
in the SCIM, it is important to obtain a surface field represent-
ation which remains valid in the source region as is done in this
work. Furthermore the radiated field in the LPS method of [13] is
not as easily obtained in the vicinity of the horizon as it is
with the SCIM.

The organization of this dissertation is as follows. Chapter
II describes the method of solution based on SCIM, The starting
point of this solution is a generalized reaction formulation of
the problem which leads to an integral representation for the fields
radiated by the configuration in Figure 1. This integral repre-
sentation is obtained in terms of the surface fields on an equiva-
lent aperture corresponding to the extent of the impedance surface
patch. The approximate, asymptotic expressions developed in here

for these surface fields over the impedance patch are also indi- :
cated in that chapter together with a brief description on the f'
final steps involving the integration of these surface fields to P

obtain the radiated fields. Chapter III discusses the accuracy

of the solution obtained via SCIM. Numerical results illustrating
the effect of different values of impedances and cylinder sizes

on the radiation patterns of a magnetic 1ine source or a magnetic
line dipole source at Q' are presented in Chapter IV. The major
conclusions of this work are presented in Chapter V. Analytical
details pertaining to the development of the present SCIM solution
are outlined in several appendices.




CHAPTER II
METHOD OF SOLUTION

The method of solution employed here for treating the radi-
ation problem depicted in Figure 1 is discussed in this chapter.
As pointed out earlier, in this solution based on the SCIM, the
impedance surface patch is viewed as an equivalent aperture in
the rest of the perfectly conducting convex cylinder. The field
radiated by this configuration is then expressed in terms of an
integral just over the surface current distribution which exists
on the aperture {or the impedance surface patch) because one em-
ploys an asymptotic high frequency form of the perfectly conducting
convex cylinder Green's function in this radiation integral. The
formulation of this radiation integral over the equivalent current
distribution in the aperture is discussed in part A of this chapter.
The surface current distribution on the impedance patch, which
is produced by the source at Q' is approximately found from the
asymptotic solutions to two auxiliary canor‘-al problems. The
solutions to these auxiliary canonical problems and the form of
the surface currents on the impedance patch are discussed in part
B. The final step in the solution involves incorporating the sur-
face currents found from part B into the radiation integral of
part A, and then evaluating this integral to obtain the radiated
field. The latter integration is performed efficiently and in
a straightforward manner via standard numerical technigugs, as
discussed in part C. In the following analysis, an eJ*" time
dependence will be assumed and suppressed.

A. Formulation of the Radiation Integral

The pertinent radiation integral may be obtained in several
different ways. The procedure by which this radiation integral
is obtained in the present work is based on a generalization of
the reaction theorem[15,16]. The same radiation integral could
also be obtained via an application of the scaler Green's theorem
(since the problem considered here is two-dimensional), or the
dyadic Green's theorem (and it's specialization to the two-dimen-
sional vector problem considered here), or an appljcation of the
compensation theorem for electromagnetic fields 17i. In the methods
based on the Green's theorems, an appropriate Green's function
which satisfies the boundary conditions for a perfectly conducting
convex cylinder must be employed. The generalized rzaction theorem
which is employed here for formulating the radiation integral is
somewhat related to the other methods mentioned above; it is chosen




L o e e s

as it allows one to treat both, the TE. and the TM_ cases simul-
taneously for this vector problem. z z

Consider the integral expressions relating the electric and
magnetic fields (E, ,FB? generated by a magnetic current source

M at P which radia?es in the presence of the actual or perturbed
geometr¥ of Figure 3, to the fields (E_,H_) generated by a test
source | at P' which radiates in the p?esgnce of the unperturbed
geometry of the same figure. This integral relationship indicated
below in (8) is obtained in a manner similar to that done in a
previous report[5] . Here, the perturbed problem refers to a closed,
perfectly-conducting surface partly covered with an impedance sur-
face patch; whereas, the unperturbed problem refers to the same
perfectly-conducting surface without the impedance surface patch.

,—“‘\{Q
vyt N
/ EO'ﬁO p' \\2

g -::E?’F(PW‘

(a) ACTUAL OR PERTURBED (b) UNPERTURBED PROBLEM
SCATTERING PROBLEM

Figure 3--The actual scattering problem, and the
related unperturbed problem.

In the case of the unperturbed problem, the test source, T
is assumed to be either an electric line source in which_case the
fields generated by this source will be denoted by (E-, o), or
T ista ﬁﬁ netic line source, generating fields which 8re®denoted
by (E, ?. The following analysis will reveal that, the fields

0
&Ee,ﬁg) can be related to the fields (EB,H ) for the case when
s g magnetic léaq_ﬂipole source, ij.e., ?or the TMz-case; like-
wise the fields ( o*Hg) can be related to the fields (E..A) for
the case when M is”a ﬂagnetic line source, i.e., for thé TE_-case.
From Maxwell's equations, one obtains z
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! vx'Eg = -jkz WE

! J& S = kv Eg + Aps i T, (1a,b)
and
th‘g = -jkzoﬂ'g - P vxn'g = kaor'g ;g if TR (2a,b)

Furthermore, (E ,H6 satisfy the radiation condition over the surface
t at infinity, Ind satisfies the following boundary conditions
on the surface s;

ﬁi!g’m =0, ons. (3)

In (1) and (2) k is the free space wavenumber, and Z°=1/Yo
is the free space impedance (i.e., Z°=1201rohms).

The fields, E

. ﬁb of the perturbed problem also satisfy the
Maxwell's equationg :

vx'Eb = -JkZ, b-ﬂ; vx]:fb = jch;Eb (4a,b)
and the radiation condition over the surface § at infinity. Also ;
:‘ Eb and Hb satisfy the following boundary conditions on s: 5
Eb - (n-!b)n = anxﬁb on s, (5a)
; $=51+s,
X ﬁXEB =0 on s, (5b)
; where ZS denotes the value of the surface impedance in the perturbed
problem:

Combination of (2), (4) and (1), (4) respectively yields

Ve [E'gxﬁb - 'beﬁ'g] = M-ﬁ'g-'ﬁ.r-ﬁb; TE_-case (6)
and
Ve [ngﬁb - Fbxﬁz] = ﬁ-ﬁg+UT-Fb; ™, -case (7)

Applying the divergence theorem to (6) and (7) and using the radiation
condition on £, and the boundary conditions (3) and (5) yields:




e
{f dsHO(Q)P*) « [Z (Q)AxAXH, (Q)P) ] =

f” dv[FS(P|P*)M(P)+E, (P'|P)-T(P) ],
1f T=J,

< (8)

I av[AT(P|P*) Fi(P)-H, (P*|P)-T(P")],
§ 1f T-H, '

The volume v is enclosed between the closed surfaces s=s and ¢
(which receeds to infinity). The angt$on of the type ( ;

the argument of the field functions and ( ) is 1ntroduced }
for convenience, and it refers to the Ofield at R dae to source

at B. Specializing the above equations to the two-dimensional

field and source configurations (i.e., configurations which are !
uniform in the %-direction), one obtains i

Idﬂ'*"'(mP )+ [2(8)AxfixH (§|P)] =
51

jdxdyﬁe(PlP' JW(P)+jfdxdyF (P'|P)T(P*) _ f
T if T’J

) (9)

{fdxdyﬁ'g(ﬂP' ) .H(P)-g[fdxdyﬂb(P' |P)<T(P*)

M T

if TH,.

The regions SM and sy are the cross-sectional areas of the 2-D source

distribution M and T, respectively. Alsc, ds in (8) is given as ds

= dgdz>0 with dz>0; hence, the 2-D arc length integral on the boundary
s, (LHS of (9)) is chosen to proceed in the direction for which d& in-
creases in the positive sense. Let the 2-D sources M and T be

" L B o A P R A 1t ¢ e

W = fi8(6-5,) (102)

10




‘ft G(E.EPI ), if T'-Jt
T = . (10b)

ﬁtG(B'SP ' ) ’ if T’nt

Let the point P' in (9) receed to infinity; whereas, the point P is
moved down to the point Q' on the surface. Thus,

£ld¢H§(6|P')-Ezs(ﬁ)ﬁxﬁiﬂb(6|o')] = FE(Q'[P1)+¥E,(P11Q") 3,
for the TM, case with fi=tM; and J =2 (11a)

£1dzﬁﬂ(6|9')-[zs(é)ﬁxﬁxng(6|o-)J = W(Q' |P*) =P, (P*|Q") -l
for the TE, case with @=3M and f,=2.  (11b)

The EB(P' Q') in the TM_ problem pertaining to (1la) is the electric

field which is producedzat P' (in the far zone) by a unit strength tan-

ﬁgntial magnetic line dipole source at Q' on the surface s,; whereas,
(P*1Q") is the magnetic field in the TE problem in (llb} which

19 produced at P' (in far zone) by a unitzsgren th magpetic line

source at Q' on the surface s,. (Q' or Q P'g and (Q' or

Q|P') are the magnetic fields indufled at Q' or Q on th8 unperturbed

surface s of Figyre 3 due to a test source T at P' in the far zone.

In the case ﬁﬁ » the test source is an electric 1ine source;

wheras, for H_, 4 eqtest source is a magnetic line source. The

expressions f8r H-*™ are available in [1,2] in terms of the

GTD approximation°wh1ch will be employed here. The GTD approxi-

mation is valid for electrically large cylinders; the latter is

assumed to be valid in the present analysis. Thus, the E_ and

W on RHS of (11a) and (11b) may be found if AxA (6!0-) iRside

the integrals on the LHS of (11a;b) are known. ThB field nxA, (Q[Q')

is the tangential magnetic field at § on the surface s, of Pigure

3 due to a source at Q' also on s,. In the TM_ case, {he source

at Q' is a tangential magnetic liae dipole; whéreas, in the TE

case, the source is a magnetic line source as mentioned earlief.

An alternative expression for E (P'|Q*) for the TM_-case of

(%la) can be expressed in terms of eqectric field quant¥ties alone
via

11
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R(Q'|P*) « @ = -EQ(P']Q') » 3, with ], -2 (12)
as follows:

~

'Eb(Pulou) .- =E’g(P'|Q') . 2 +%; ) dz[!'g(P'la) + 2]
S

N

1.
- [Ey@e) - 21 (13)

Furthermore, it is shown below in section B that the unknown Eb(ﬁlQ')
can be expressed as

E,(Q1Q') - % = M, 8(010") + E (Q]Q") - 2 (14)

In (14), E (Q|Q') ° z is the tangential electric field of the mag-
netic Yine dipole source, M = T M 8(p-p,,) and it is observed on

the surface s, which_]ies “gust uﬂderne th" the magnetic line dipole
source; wherels, ( LQ )+2 is the tangential electric field of

the same source, and this field is observed on a surface s; which

1ies "just above" the magnetic line dipole source. Here § must
be interpreted as Q = lim(p=p'+e;¢) where Q' = (p',¢') and ¢ is
e*0

a pgsitive numbe:+ Explicit expressions for the electric field
E.(Q|Q') and Eb(Q |Q') of (14) are given in Appendix B. Equation
(94) is a well known expression for the discontinuity of the tan-
gential electric field as one moves from the surface S to the
surface Sy across a magnetic current.

When (14) is incorporated into (13), a further simplification
results so that the final form of Eb(P'IQ') becomes

E,(P*]Q") =,%,; [, e |d) - BEE7 Q) -3 ()
S
1

Ig (15) it is noted that the integral is performed on the surface
$1 "just above" the line dipole source.

The importance of introducing (15) will become evident in
section C)~¥here it is pointed out that the expression for the
unknown E,_(Q |Q') in the TM_ case is less complicated than the
one for the unknown Hb(Q']Qf of (1la) for the same TMz case.

An approximation for the unknown Z_axnxH, (Q]Q') in (113;11b)
will be introduced next together with af apprB

E @*1q").

ximation for z -«
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B. Approximation for the Surface Currents

on the Impedance Patch

The current 2 ﬁxﬁiﬂb(ﬁlQ') of (11) which exists on the finite
length impedance sirface patch sy may be expressed as

. m e -M2 2 2] TE, case
anxniﬂb(Q|Q') = -JKY 2, wa 6> + G | , for the
d

TMZ case

(16a)

and similarly the current E (6+|Q') ez (= %-+ﬁXEb(5+|Q‘)) of (15)
which exists on the impedange surface patch ] is,

E (2'10") + % = -aM [6%(2"]Q") + 6R(Q7[Q') Ifor the TM.-case
(16b)
where a_ is defined in (20c). M or M, are the strengths of the
magnetié line source or line dipole 58urce at Q' for the TEz or
TM, case, respectively. The -jkY 7 ':;A GE refers to that

-M T
component of the current which would exis@ if the cylinder was
completely covered by an impedance surface. The quantity

~( "R

'MdT ” g

to the current -JI(YOZS{'Mz J-G which arises from the
-M 7
d

-JkYon.{'Mz }Gg is then viewed as the correction or perturbation

truncation of the impedance surface at Ql and 02. The term

-3kY 2, -Mza GE thus refers to the component of the current which
- d'l'
is reflected from the ends of the patch at Ql and 02.

Explicit expressions for Ge(Q+|Q‘) is given in (B-44a) of
Appendix B. A comparison 8f,‘87) with (B-44a) reveals that, an
asymptotic expansion for G-(Q [Q') can be obtained from the asymp-
totic expansion for G" by simply cnanging a, and B, in the latter
to a and B_. The final form of " is givel in (17a). The quantity

68(q [Q') which is analogous to 6! arises from the fact that the
impedance patch is of finite exteft, and therefore there are re-
flections from the ends of the patch at Ql and 02.

13
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-Mz“ : may be explic-

In particular the quantity -JkYOZs

M.t

itly found from the canonical problem of detgrmining the surface
fields of a magnetic line source or a magnetic line dipole on a
circular cylinder which is completely covered with an impedance
surface as in Figure 4. The radius of the cylinder is denoted

by a. The points on the impedance patch are specified by the arc

length t(=a|¢|) along the surface of the cylinder and it {s meas-

ured from the source. In appendix B, an asymptotic approximation

to Gg for the circular cylinder case is presented; this asymptotic
approximation is valid for electrically large cylinders which are
of interest in this study. While an exact circumferential eigen-

function (or modal) series expansion exists for G pertaining to
the circular cylinder case, it is poorly convergent for large cyl-
inders. Furthermore, this exact model series representation for
the circular case cannot be generalized to an arbitrary convex
cyHnder.g In contrast, an asymptotic high frequency approximation

for the G® pertaining to a circular cylinder becomes increasingly
accurate with an increase in the cylinder radius. Also, this as-
ymptotic solution can be generalized rather easily via the local
properties of high frequency field solutions to treat an arbitrary
convex cylinder with a slowly varying curvature as in the geometri-
cal theory gf diffraction (GTD) procedure. The asymptotic approxi-

mation to G° for the circular case is developed in sufficient detail
in Appendix B; hence, only the final results are summarized below.

; - 22
1 (2) phiey os Oh 9Bt dan g oo oDkt
rﬂ HO (kt)Fl(E) -] _B; e ey - m_ e Q(jbhfﬁ)e
2
2 a
CdKE [ okt {1kt % o 4 Yphooll . ,
i?h [e { 3+ 1}+ 2(1-a, -d;;) Fz(kt)] >y
6" 3 tkt  (17a) g
gt §
- P tokst 176
T b0 gpt(ak 2 " (170)

and
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(b) TM, —CASE

Figure 4--Geometries of canonical problems of a line source on
a circular cylinder covered completely by an
jmpedance surface.




2) 2
rl H( (kt)

-Jg gt

21
HT— F (g) J—2—— e egt G(t)es '23'(1"’ (kt)

2
2 k d 1
[H{2) (kt) {1-22 €% Q(2) ]] + aj—(l-as a—%)r;ut) 3

6%~ tdst  (18a)
-Jo E
“nj S &Kt ¥ e——P——_l——z; toht (18b)
4nk PO op-(agk "m)

\
where t_ is the maximum total impedance patch size beyond which
the asyfptotic representation of the currents in (17a) and (18a)
cannot be trusted. An empirical equation for t, is presented in
Chapter III. Also, in (17)

e <1 -Gl 2l gl e s

. ; 12
-t -jkt -b kt
" Fg(kt)=-k—eJBh €yt S Q(4b, Jkt)e " a0
Bh Jﬁ? h
(19b)
]
| : 1/3
E t=2a¢|; g=ml¢|; m= (%9 (19c,d,e)
‘ ap = -Jk zo 5 Bp = /k +a = 2m, (19f,q)
o
= T(_hj;; 0;' = -lahl; (lgh)i)
_d1 >
Eh = {0} [y ah<0 . (lgj)
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gg are the roots of wé(o)-gqu'l wg(o) = 0 where w,(ag) = n[Bi(o)—in(o)]

the Fock-type Airy“function. The prime over w,“indicates the deriv-
ative with respect to the argument. These roots ﬁave been extensively
studied by Wait[7] and Logan[20], (also see Appendix B).

Similarly, the quantities in (18) are defined as follows:

P -1-30 22, B 3.8 MmOl (200

-3t -jkt 2
F§(kt)= ee e ¥ € Q(z)e? ; 20 (20b)
s kJm
Y
_ a1, .S . _ 1.2, 2 _
a = -jk Y; ; Bs = /k ta = ans (20c,d)
. a;j— . "
by =24 5 o0 =-log| s z = gblkt (20e,f,g)

€ ={é} . asio (20h)

in which the z of (20-g) is not to be confused with the z coordinates
(the present analysis is independent of the z coordinate) and YS =_1/ZS
is t?e surface admittance in mhos. o, are the roots of wé(o) -ask m
w,(o) = 0.

2

The function Q is related to the complementary error function,
erfc such that

© 2
a) =¥ erfe(®) = e ox .

It is important to point out that the asymptotic expansion for
G: given in (18a) is not unique. A second asymptotic expansion for
G” can be obtained from the tangential electric field (14) on s, due
to a magnetic line dipole M, and the impedance boundary conditidn of
(5a). Carrying out the necessary calculations yields

- a . a,. \2 -
6*(dle") - ;; 8(d10") +(;i) 6(@'n’) (21)
where the expression for Ge(h+|0') can be obtained from Gh of (17a)

by simply ghanging the ap and B, to a_ and B_. Consequently, incor-
porating G° of (21) into the H Pield ?ntegrai equation of (1la) yields

17
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identically the same result as the one which is obtained via the
E-field integral equation of (15) in conjunction with (16b). As
pointed out earlier, (15) in conjunction with (16b) is to be pre-
ferred over (11a) in conjunction with (18a) for purposes of nu-
merical calculations. It is interesting to note that if one adds
the zero term, "1-1" to the integrand of (B46), one then again
arrives at (21) after an appropriate recombination of the terms
in the modified integrand.

L A il NI AN € 3 e -

h It is observedethat thg approximation in (17a) and (18a) for

G" (and hence for G~) and G are in terms of tabulated functions,

and they can therefore be easily evaluated. The representations

in (17a), (18a) and (16b) are valid for the arc lengths Q' and

Q'Q, which are only moderately large. For larger impedance patch

]enSths, i.e., for t>%t_, one mHst use a residue series represen-

tation of (17b) and (18B) for G" and GS, respectively. The de-

velopment of the residue series representations given in (17b)

and (18b) is also discussed in Appendix B; in particular, one is

referred to (B37) and (B74) of Appendix B. Such a residue series

representation has been studied extensively by Bremmer[21], Logan

[20]), and Wait[7]. However, the alternative representations in

(17a) and (18a) which are valid close to the source appear to be

different from those obtained by Wait[12]. Furthermore, the an-

alysis [9] which was for a spherical surface, and only for the

TE case, is not directly applicable to the 2-D case of interest

here as it would lead to results that are not uniformly valid in .
the vicinity of the source (for both the TE, and TMz cases). '

The representation in (17a) and (18a) for the TE, and TM
cases, respectively consists of several terms which hive an if-
portant physical significancg. The _first set of terms in (17a)
and (18a) corresponding to G and G of (B10) and (B49) in Appendix 2
B, respectively represent thé high ?requency currents on a per- L 5
fectly conducting circular cylinder; whereas, the remaining terms h
represent a perturbation or correction arising from the presence :
of a non-zero surface impedance. Furthermore, the first terms
in (17a) and (18a) are expressed as a product of the currents on
a perfectly conducting planar surface and the perturbation effects
arising from the finite curvature of the perfectly conducting
circular cylinder. Also, the second set of terms in {17a) and
(18a) which represent an impedance perturbation to the perfectly
conducting circular cylinder, have the same form as the impedance
perturbation to a planar conducting surface. Thus, if these second
set of terms were used in conjunction with "only those parts” of
the first set of terms which correspond to the planar conducting ;
surface, one would then obtain the same asymptotic currents as d
those on a planar impedance surface. Finally, the last set of B
terms in (17a) and (18a) are additional corrections to the first
two sets of terms arising from a combination of curvature and
impedance effects. Further details on the physical interpretation

o Al ey
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of Gg for the completely impedance covered circular cylinder are
available in Appendix B. It is important to note however, that
the results in both {17a) and (18a) firstly reduce to the perfectly
conducting circular cylinder case if the surface impedance van-
ishes, provided a slight loss is introduced in the external medium
(free space) before performing the Timit on (18a) to recover the
perfectly conducting case. Secondly, they reduce to the results
for the planar impedance surface as the curvature of the cylinder
becomes vanishingly small. Thirdly, the results in (17a) and (18a)
reduce to the results for a perfectly conducting planar surface

as the curvature vanishes, and the surface impedance also vanishes.
As pointed out earlier, the expressions for the surface currents
should be well approximated in the vicinity of the source in order
to obtain the radiation fields accurately. Since the radiation
patterns calculated via SCIM are found to agree very well with
those based on other trustworthy independent calculations, it is
inferred that (17a) and (18a) are adequate for describing the
source currents in the vicinity of the source.

The extension of the circular cylinder results in (17a) and
(18a) to an arbitrary convex cylinder with a slowly varying curva-
ture, in which the cylinder is completely covered by an impedance
surface is carried out by assuming that each point on the cylinder
may be approximated locally by a circular cylinder of the same
local radius of curvature at that point. As mentioned previously,
this procedure is based on the local properties of high frequency
fields as employed in the GTD procedure. Thus, one replaces t

of (19a) by fn. dt where § is the observation point of the currents
on the impedagce patch as shown in Figure 1; also, the Fock pa-
rameter, £ of (19d) is replaced in the usual manner[22] by an
integral to account for the variation of the surface curvature.

To this end, one proceeds as follows. As in (19d)

(22a)

et

E=m|¢| =m

where a is the radius of the cylinder and t is the arclength defined
in (19¢). Since m (given in (19e)) is assumed to be slowly varying,
then (22a) can be differentiated, yielding

- .

de = m 4t (22b) ,
pg _
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where p in (22b) is now the local radius of curvature. Integration
of (22b9 from Q' to Q results with

Q kog(t) Y}/
fq. m dt dt m =(___g__) (23)

Pq

In (23), m may be taken outside the integral if one replaces

m by~fm(Q') m(d) to represent some type of averaging effect to
account for the slowly varying curvature; one notices that such
an averaging is the geometric mean of m between points Q' and Q.
Furthermore, this averaging effect is consistent with reciprocity.

In this work, the length of the impedance patch can be small;
however, it cannot be too small such that the source at Q' lies
close to either edge of the patch (at Q and Q, of Figure 1).

This is not a serious restriction s1nce in pragt1ca1 situations

of interest here, the patch needs to be at least moderately large
enough in order to have a marked effect on the radiation patterns,
Over such moderate distances from the source to the edges, the
field component which continually leaks energy off the surface
(unlike an Elliot mode type field which leaks little energy) is

in general sufficiently weak at the edges of the patch to where
the reflection of this field which travel back toward the source
(while again shedding energy) may be neglected in the calculation
of the radiation field. Furthermore, even the approximate asymp-
totic calculation of these reflections appears to be a rather com-
plicated task which is not considered here. On the other hand,
the current can be substantially modified by the reflection of

an Elliot type mode field from the edges of the impedance patch.
Hence, the present analysis incorporates the reflection of such

an E1liot mode field through the use of a local reflection coef-
ficient defined at the edges of the impedance patch. This reflec-
tion coefficient is found from the solution to the canonical problem
of surface wave reflection from a discontinuity in planar impedance
boundaries as shown in Figure 5. To recapitulate, one therefore
basically assumes here that the total field incident on the edges
of the impedance patch generates a reflected wave on the surface
which is well approximated by only the reflected El1iot type mode
field, since this mode is the dominant contributor to the surface
field. The remaining, less significant component of the reflected
field which is neglected consists of propagating and non-propa-
gating (or evanescent) parts; the latter part does not contribute
to the radiated fields and it's exclusion is therefore justified.
The propagating part is essentially a non-surface wave type field
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Figure 5--Geometry of the canonical problem of surface wave
diffraction by a discontinuity in surface
impedance associated with two part,
planar impedance.

which leaks energy off the surface; in general it contributes suf-
ficiently weakly to the radiated field for impedance patch lengths
which are not extremely small and hence it is ignored.

The canonical two part probiem in Figure 5 above has been
analyzed via the Wiener-Hopf technique in conjunction with Weinsteins
factorization proceduref4). The latter factorization procedure
leads to relatively simple Weiner-Hopf factors. From [4], it is
found that the surface wave reflection coefficient, R_ for this
problem is

. 2
a 4 I u du

. sinhu = | < cinn-l s,
RS = j §; e’ o ; E = sinh o TMZ case (24)
2¢
k-8, I U__ gy o
- h 7 sinh u .  csnn=l Th,
Rh = - §;~— e 0 ;5 & = sinh T TEz case

(25)

1he]plots of Rh and RS are illustrated in Figures 6 and 7, respect-
ve y.

As pointed out earlier, Gh’s represents the perturbation to

the current on the patch. Thi§ perturbation term arises from the
truncation of the impedance surface at Ql and QZ' In the following
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analysis, the subscripts "s" and "h" are dropped, since it is equally
applicable to both the TEZ and the TMz cases.

Incorporating the above values of R, the GR can be calculated
via a self consistent procedure as follows:

The total incident current, G (Ql) at Q1 consists of two terms
which are the current G(Q,) generaIed by the*principle source and
observed at Q,, and the cﬁrrent, G (Qﬂ Q,) reflected from Q, and
evaluated at Q,, i.e., G(Q,) = G(B )T+ eR(01502) as shown %n Fig-
ure 8. The tola] incidext Eurrent (Qz) at can be found simi-
larly by interchanging subscripts 1 Ind 2, aboee. The term G,(Q |02)
can be related to GT(QZ) via the reflection coefficient such Qhal

-3B Q,Q,
G, (Q |02) =R G (02)e , where Q 02 denotes the arclength
bgtwéen Q, and Q,.° Similarly, the te;m GR(QZIQ ) (which arises
in the pr%cess of calculating G+(Q,)) can be wr}tten in terms of
R, G (Qﬁ) and Q, 1 One may chn go]ve for GT(QI) and GT(QZ)'

It can De shown“that:
-jeﬁle
G(Ql)+R e G(Qz)
6,(0,) = (26)
-J28Q,Q
_r2 o Y%
-jBQQ,
RG,(Q,) e o
y e RG,(Q,) eA 9% _
-iBQQ;

GalQ, 1Q,)=RG(Q,) €

64(Q,)

Figure 8--Incident and reflected rays associated with
the self consistent method.

Interchanging subscripts 1 and 2 in (26) gives the corresponding

expression for GT(QZ). One notes that (26) reduces to a more familiar

result when the source point is located at the center of the patch
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so that G(Q,) = G(Q,); in which case G,(Q,) = 6(Q;) (1-R e )y .
The perturb&tion cu?rent at a point Q ﬁn %he patc% is then given

by the following equation

- -3670,
-38
Gp(Q) = R G(Q)) e P+ Rer(y) e - (27)

As the value of Z /Z0 becomes smaller than 0.5, the correspond-
ing values of |R_| becofles larger than 0.9 as seen from Figure
7. Such a large’value of the reflection coefficient R_ implies
via (27) that a very large number of multiple bounces Between the
edges of the impedance patch remain significant in the calculation
of the TM_ E1liot mode field. In such a situation, the accuracy
of the présent solution (SCIM) may be impaired, because, a small
error in the approximation to the El1liot mode field which is di-
rectly incident from the source onto the edges of the patch could
be compounded through each subsequent reflection (bounce) from
the edges. In practice, one would not employ values of |Z_/Z_|
for which |R_| is large anyway, as this is obviously not d8siRable
from an antefina design point of view.

Furthermore, the earlier assumption; that is, the propagating,
non-surface wave type fields which are generated by the "reflections"
of E11iot mode from the edges contribute sufficiently weakly to
the radiated field, does not hold for such large values of the |
reflection coefficient. Excluding this non-surface wave field results i
in an inaccurate representation of the currents on the patch in
the vicinity of the edges. However, as indicated earlier, an ac- [
curate representation of the currents on the impedance patch is !
essential for accuracy in the SCIM. One notes that in the SCIM, ‘
an integration of the component of the current reflected from the
edges gives rise to fields diffracted not only from the edges on
which the reflected component terminates, but also from the op-
posite edges where the reflected component originates. The latter
"spurious diffracted field" contribution is sensitive to errors
in the currents at the edges; however, these errors are generally
not large if the reflection coefficient is sufficiently small.
An alternative approach for including the effects of multiple re-
flections in the total radiation field calculation is to simply
superpose the solution based on the SCIM but without including
the correction currents resulting from the reflections of the Elliot
modes, with the part of the GTD ray solution of [4] for calculating
the diffracted fields which result only from these reflections.
The latter GTD diffracted field contribution is calculated via
the self consistent approach for summing up the multiple reflec-
tions of the Elliot modes as indicated earlier. It is noted that,
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the GTD solution does not require an exact knowledge of the form
of the currents in the vicinity of the edges, hence it is suitable
for the evaluation of the contribution to the radiation pattern
from the multiple reflections. Furthermore, this alternative pro-
cedure is attractive from the point of making the numerical radi-
ation field calculations more efficient.

C. Numerical Evaluation of the Surface Currents
on the Impedance Patch

The last step of this analysis is to evaluate the integrals
in (11a), (11b) and (15),enmmgrically over the impedance patch.
As pointed out earlier, Ho’ (QlP') is the magnetic field on the
i@pﬁdance patch due to an electric (magnetic? line source at P';
H->" (G|P') is a well behaved function of the arclength on the
cglinder and suitable for a numerical integration technique. The
explicit form of this magnetic field is given in [1,2] and will
not be repeated here.

The term nxH (§]Q') in (11b) is related to (17a) via (16a).
As it can be seen from (17a), this tsym has a log-type singularity
(small argument approximation for H'“/(xt)) as the variable of
integration (i.e., the arclength) gSes through the source. Such
integrable singularities can be treated numerically in the computer
via Gaus' method. Thus, the TE  case presents no numerical dif-
ficulties. However, the term n&H (Q|Q*) in (11a) is much too
singular for a numerical integrat?on scheme. In fact, ff (18a),
with the useage of the small argument approximation of H ETkt),
one can show that this singularity is in the form,of an Inverse
square of the arclength type (i.e., 1/(arclength)®). Such singu-
larities are not suitable for a numerical integration procedure
and therefore one must reduce the singularity by means of the
distributed source technique before any calculation work can be
done. To this end, one proceeds as follows for the nxH_ of the
TM_ case. Let the source be a distributed sinusoid sucR that the
di€tribution function, A(x') is given by

A(X') = SinsL:S'W;&X'U , (28)

where 2w is the total extent of the source. The resulting current
on the patch from the sinsoidally distributed source can be found
by weighting the currents generated by an infinitesimal source

with the distribution function, A(x') and then integrating it from
-w tow, i.e.,
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nxHp (@) = [ A(x') nxH (QlQ') dx' (29)
-W

where f,_(Q) and H,_(§]Q') in (29) are the magnetic fields observed
at a po?nt G on tRe surface of the patch due to a sinusoidally
distributed magnetic line dipole, and an infinitesimal magnetic
line dipole, respectively.

As mggtioned above, the singularity of nxH_(G]Q') in (29)
has the Hj (kt)/kt form (see Equation (18a)) wRich can be rewritten
as

kt d(kt)2) ©

In general, if a function, F(k|x-x'|) can be rewritten in
terms of another function f{k|x-x']) via

d2

F(k|x-x']) = [1 + W] fk|x-x'{) (31)

then the integral of F(klx-x'L) with A(x') over the interval (-w,w)
can be expressed in terms of f(k|x-x'|) as follows

W W &2
I= [ A(x') F(kix-x'[)dx* = [ A(x') (1 + —————-————é)f(klx-x'|)dx'.
~W -W d(k|x-x'])

(32)

Repeated application of integration by parts to (32) yields

W w w
I=Ax') fr(k]x=-x']) | - A'(x') fk|x=x']) | + [ dx'|A(x")
-w -W -w

+A(x') | Fk]x-x"]) , (33)
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,’ where primes over the functions indicate derivatives with respect to
the argument.

The first term in (33) is zero because A{tw)=0. Furthermore the
last term in (33) is also zero, because A"(x') =-A(x'). Hence (33)
becomes

= A (x)F(k]x=x" )| = A" (x")F(k[x-x"])[} (34)
-W

From the definition of A(x'), it can be shown that

4 Axr) = 7 Cosklulx’l) iz (35)

Substituting (35) into (34) yields the desired relationship

£ N )( d )(l Yax' = e [F (k| x-w])

Ax) |1 + —— ) flk|x-x"|)dx' = a—5= Lf(k|x-w

-b d(k|x-x"])? | st o F(KPxevd :

+ f(k|x+w|)-2 cos kw f(k|x|)] (36)

. 4
4‘ Substituting (30) into (18a) and employing (36) yields R

2
" 1 . :
& - 1_21 [%3-H§2)(kti)Ff(£i) - %3 ng)(kti){1-2zie ! Q(zi)ﬂf+- :

3 .
b G -Js It -t'l k d
+ fAuWLjﬁ—e sto e+%—0ﬂ-—d
‘b kZBS s S dag

= e A

b =k S

F;(klto-t'lﬂdt‘ + %9 Aty e, (37)

where 85 is the integral of 65 of (18a) weighted by A(t') over
the interval -w tow. The t 1° t. and t,, are the arclengths be-
tween the observation point Q" on he patéh and the points -w, o,
and w of the distributed source, respectively as shown in Figure
9. &; and z; are defined in terms of t, in a similar fashion,

t
such that Ey=m 31 and z; = JES kti. The result in (37) can

be generalized to an arbitrary convex cylinder with a slowly vary-
ing curvature via (23).
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Figure 9--Sinusoidally distributed line source
and related parameters.

The resulting current on the patch due to a distributed source,
A(t') can now be written as follows

Al (8]Q") = -3v My (85 + &2 (38)

E; can be obtained from (27), if one uses G° instead of GS.

As it can be seen from (37), the highest singularity in (38)
is a log-type singularity; hence, the resulting integrals upon
substitution of (38) into (11b) can be evaluated numerically as
principal values.

The alternative formulation of the TM_ discussed above in
Section IIB is recommended for the following reasons. Firstly, the
currents of (18a) to be employed in the reaction integral formula-
tion given in (11a) are highly singular at the source and therefore
it is very difficult to obtain a satisfactory mathematical repre-
sentation for the fields. Secondly an attempt at smoothing out
these singularities (as it is done above) for the purposes of
numerical treatment leads to a rather complicated and siow com-
puter code. It is however important to point out that the results
obtained from (1la) agree very well with other independent checks
such as MM-GTD and GTD techniques. Nevertheless, the electric
field integral representation given in (15) for the TM_ case is
superior to the one given in (1la) because the formulafion in (15)
leads to source singularities which can be numerically integrated
in the principle value sense; this numerical treatment is not com-
plicated, and it leads to faster computer codes. Furthermore,
the computer code for numerically processing the electric field
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representation of (15) for the TM_ case can be obtained from the
code for the TE_ case (1lb) with 6n1y minor changes; hence, both
cases can be inEorporated into a single computer code. It is how-
ever important to note that, in the process of numerical integration,
one should divide the impedance patch into small enough segments

so that the integral subroutines can sample the variations of the
currents on the patch accurately, It is observed that the segments
which are as long as half an electric wavelength; i.e., n/B can
accurately be integrated via a 5-point Gaussian quadrature formula.
The 8 (8, for TE, and B¢ for TM,) is given in (19g) and (20d).

29




CHAPTER 111
RELIABILITY OF THE SURFACE CURRENT INTEGRATION METHOD (SCIM)

This chapter is designed to establish the validity of the
present analysis by comparing it with other independent methods.
These numerical comparisons of the SCIM are illustrated only for
the circular cylinder geometry of Figure 10. Nevertheless, as
pointed out earlier, the present analysis based on the SCIM can
also be directly employed to treat convex cylinders of arbitrary
cross sections. For convenience, the source is located in the
) middle of the impedance patch. The impedance patch width is de-
: fined in terms of the angle, measured from the source. The
angles, ¢ and o specify the points on the impedance patch and
the observation 'direction in the far field, respectively.

The SCIM is compared with three independent methods. Two ,

.of these methods are based on the different mathematical models :

of the problem, and they are called the MM-GTD and the GTD formu- P

‘ lations. Some experimental results are also included as a third : 3

method. It is noted that like the SCIM, the MM-GTD and GTD formu- !

‘ lations are also asymptotic in the sense that they are developed

for electrically large cylinders. The MM-GTD and the GTD formula- ]

tions are discussed in detail elsewhere [2,4] and some of the main :

features of these methods have been discussed in Chapter I, hence
only a short summary of these methods will be repeated here for

completeness. : :

The MM-GTD, a hybrid technique, combines the method of moments
and the geometrical theory of diffraction. An application of the
generalized reaction theorem, in a manner analogous to that employed
in the development of the result in Figure 11, yields the governing
integral equation employed in the present MM-GTD formulation as:

! [ Fpp@10') + 2y ORAF @RI 100 =-FQ'P) 247, (PQ") - 2
1 For TEZ case (39a)
{1 For (A1Q") « 2 (@AxixHG(T|P)Ide =-Fp(Q'[P) * 3-E,_(P[Q") + 2

For TM, case. (39b)
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Figure 10--The antenna geometry and the related parameters.
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Figure 11--An illustration of the experimental set up.
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In (39), H _ and E__ are producgd by the source M =28(|p-p,,|); whereas
and E %%are prB8fuced by M =t8(|p-pn.|). As 15 the SCIﬂ, the sub-

s@Fipts "8% and "b" in (39), denotes the fields of the unperturbed and

perturbed problem respectively. Equations (39a) and (39b), gre first

order inhomogeneous integral equations with unknown and re-

spectively, and they can be solved via the moment method technique.

What differentiates this method from the conventional moment method

solution of integral equations pertaining to electromagnetic prob-

lems is the fact that in the former one, the free space Green's

function is used as the kernel of the integral equation; whereas

in the present analysis, a uniform GTD approximation for the per-

fectly conducting convex cylinder Green's function constitutes

the kernel. This is the reason behind choosing the name MM-GTD.

At the present time, the MM-GTD solution for the TE_ case appears

to be very accurate; on the other hand, the T™M cast is expected

to be only reasonably accurate since further wbrk is needed to

refine the MM-GTD procedure for the TM, case as indicated in [51.

The GTD method is a ray optical method, and the ray picture
for this problem is illustrated in Figure 2. The direct (or geo-
metrical optics) ray field and the fields diffracted from the edges
of the patch are calculated from appropriate canonical problems
for TM_ and TE_ cases as explained in [4]. It is noted that the
GTD sofution pfesented in [4] is restricted to only those impedance
surfaces which can support an E1liot type surface ray mode field.

As indicated above, an experimental verification of the ac-
curacy of the SCIM solution is also carried out in this study.
This verification is for the TE_ case. The experimental set-up
consists of a 5 ft long, 3% inch radius cylinder, which models
the infinitely long perfectly conducting cylinder. An x-band wave-
guide feeds an axial slot in this cylinder as illustrated in Figure
11. Polyethylene layers which are 4 inches wide, and 0.058 inches
thick are employed to simulate the impedance patch. The value
of the impedance can be changed by altering the number of poly-
thelene layers. The measurements are conducted at 10.77 GHz.
At this operating frequency, the complex, die]gctric constant of
polyethylene is found to be € = (2.25 + j9x10™ ")e_; €. being the
permittivity of the free space. o0

Comparisons of the results for the radiation patterns based
on the SCIM with those based on the MM-GTD, the GTD, and the experi-
mental data are presented in Figures 12 through 28.

The GTD patterns presented here appear to be reasonably accurate.
However, it is observed that the GTD results in [4] for the circular
cylinder TM_ case in general need to be refined further to make them
as reliableas for the TE_ case, especially for a wider range of
parameters than those confidered in the GTD calculations presented
here, In the case of a cylinder with a very small curvature
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Figure 12--Radiation patterns of a magnetic line source on
perfectly~-conducting planar and circular cylindrical
surfaces which are partly covered with an
impedance surface patch.

(ka=360), the asymptotic analysis (SCIM) in Figures 12, 13, 14,

25 and 26 are also compared with the results obtained from the GTD
analyses for an impedance patch on a perfectly conducting ground
plane (which is the limiting case of a cylinder with vanishing
curvature.) These radiation pattens of an antenna on a flat
surface can be used to predict with reasonable accuracy the perti-
nent parameters of the radiation patterns in the 1it region of

} a similar antenna located on a cylindrical surface with small curva- 4
f ture.

e e
B

In Figures 15 through 22, and 27 and 28, the SCIM is compared
with the GTD and MM-GTD results. It is observed that the results .
obtained from these three independent methods compare very well
with each other. However, it should be pointed out that there
are no MM-GTD results presented for the TM_ case. This is because
it is very cumbersome to obtain a satisfacfory MM-GTD solution
for this case at the present time, as has been mentioned before.

33




e

o

0

P
—/)

7

\ d8 ™™ ¢p
A 0 N *
4 SOURCE ‘ \

N\

270° . 777 YrrrrrY . 9Q°
-L/2 L/2
—— ASYMPTOTIC } ka =360  Z = 3008
= [+
SOLUTION (SCIM) 24)0 3 TE, - CASE

— — GTD L=3»
({ FLAT SURFACE) -

Figure 13. Radiation patterns of a magnetic line source on
perfectly-conducting planar and circular cylindrical
surfaces which are partly covered with an
impedance surface patch.

The relative merits of these three methods (i.e., SCIM, MM-
GTD and GTD) are presented in Table I. In Figures 22, 23, and
24, where the SCIM is compared with experimental results, it is
modified by taking the impedance surface as being slightly lossy
to account for the loss in polyethelene panels. The loss is in-
troduced into .“e solution as an exponential decay along the im-
pedance surface. From this point of view the solution may be con-
sidered as a perturbation to the lossless case. The SCIM is further
modified by introducing the effect of the finite source distribution
in the axial slot via a multiplicative slot pattern factor. The
polyethylene layers are modeled as an impedance surface. These
polyethylene layers which are 0.058 inches and 0.106 inches thick
for the two experimental cases may be approximated by an equiva-
lent impedance of Z_=j708 and Z_=j1509, respectively; this equiva-
lent inductive impeaance is bas8d on the flat surface approximation
and the corrections to this impedance arising from the curvature
of the cylinder have been ignored since the cylinder is over twenty
wavelengths in circumference.
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Figure 14, Radiation patterns of a magnetic line source on
perfectly-conducting planar and circular cylindrical
surfaces which are partly covered with an
impedance surface patch.

Finally, it is recognized that the TM_ case is very nearly
a dual of the TE_ configuration. The prinéip]e difference is that
the TM_ source i€ a magnetic 1ine dipole source which is of course
not a fual of the magnetic line source and the conducting part
of the surface in the TE_ case is not replaced by it's dual for
the TM_ case,. Nevertheléss, by a proper choice of surface im-
pedancés, it is possible to generate patterns (for the TM_ case)
similar in nawure to the smooth patterns of the TE_ case 6resented
in this chapter. The following results for the TM° case are taken
for the range of impedances such that high ripples“occur in the
radiation pattern. This is done merely to compare the SCIM with
the GTD solution in the domain where they both are valid, and to
supplement the computations for the smooth patterns for the TE
case, It is emphasized that smooth patterns can also be generﬁted
for the TMZ case as is shown in Figures 46 through 51.
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Figure 15--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 16--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.

37

[ES————




—— ASYMPTOTIC
| SOLUTION

(-]
% — —— MM-GTD

L

z, = j300Q
TE, -CASE

Figure 17--Radiation patterns of a magnetic line source on
perfectiy-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 18--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 19--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch,
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Figure 20--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 21--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 22--Radiation patterns of a magnetic line source on
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Figure 24--Radiation patterns of a magnetic line source on
perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 25--Radiation patterns of a magnetic line dipole source
on perfectly-conducting planar and circular cylindrical
surfaces which are partly covered with an

impedance surface patch,
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Figure 26--Radiation patterns of a magnetic line dipole source
on perfectly-conducting planar and circular cylindrical
surfaces which are partly covered with an

impedance surface patch.
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Figure 27--Radiation patterns of a magnetic line dipole source
on perfectly-conducting circular cylinder which is partly
covered with an impedance surface patch.
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It is observed from these comparisons that the asymptotic
solution (SCIM) indeed agrees very well with the other independent
methods of analysis.

In the following paragraphs, the bounds for the asymptotic
analysis (SCIM) are studied. The basic parameters of interest
occuring in the SCIM are: (a) the distance from the source to
the edge of the patch, (b) the radius of the cylinder, and (c)
the value of the surface impedance. The range of these parameters
over which the SCIM remains accurate have been established in an
approximate fashion after an extensive numerical study. In par-
ticular, for a given value of impedance and the cylinder radius,
there is a maximum patch size beyond which the asymptotic repre-
sentation used in the SCIM for the currents on the impedance sur-
face are strictly not valid. As indicated previously in Chapter

I1, the surface current on the impedance patch is assumed to consist

partly of the E1liot mode or surface wave type component which
propagates from the source to the edge of the patch, and secondly
it consists of the component which is termed as the non-surface
wave component, since the latter is the only current which propa-
gates to the edge of the patch if the impedance surface can not
support an Elliot mode field. Thirdly, there is a reflected com-
ponent of the current to account for the reflections of the current
incident on the edges of the patch. Also, as pointed out earlier
this reflected component of the current is assumed to be produced
by the El1liot mode field or surface wave component which inpinges
on the edge of the patch. A few typical plots of the magnitudes
of the equivalent magnetic surface current densities which exist
on an impedance patch located on a perfeclty conducting circular
cylinder are illustrated in Figures 29 through 34. The current
densities (ZsﬁxﬁxH(Q]Q') of (16a) for the TE_-case and nxE, (Q |Q')
of (16b) for the TM_-case) are plotted as a function of thB arc-
length, t=a|é|/A, mBasured from the source placed at the center
of the impedance patch where x=2n/k and |¢| is the angle between
the source point and the observation point on the impedance patch.
As can be seen from these typical current plots, the amplitude

of the non-surface wave component of the current begins to grow
beyond a certain maximum distance, t /2 from the source. The non-
surface wave current approximation iS not expected to be accurate
beyond the immediate neighborhood of this distance, t /2. For
the TE_-case, an empirical equation can be found re]a@ing the maxi-
mum tofal patch size, t (as defined above and measured in wave-
lengths; i.e., 2a|¢_|/\] to the magnitude of the normalized im-
pedance, |z_| = |Z.®/z_"and the normalized radius of the cylinder,
ka. For thd asympfoti? formg of the currents which are given in
section IIB to order 1/(ka)®, such an emperical equation has the
following form:

ka = [|z] +0.08] (3.1 t2 - 2.6 t + 2.8) + 3.6. (40)
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Figure 29--Magnitude of the equivalent magnetic current density
on an impedance patch (which partly covers a circular

p cylinder) as a function of the arclengSh measured

.‘ from the source. R,=0.071/14".
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Figure 30--Magnitude of the equivalent magnetic current density
on an impedance patch (which partly covers a circular
cylinder) as a function of the arc]engtg measured
from the source. R,=0.2173/24".
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Figure 31--Magnitude of the equivalent magnetic current density
on an impedance patch (which partly covers a circular
cylinder) as a function of the arc]engtg measured
from the source. Rh=0.2173/24 .
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Figure 32--Magnitude of the equivalent magnetic current density
on an impedance patch (which partly covers a circular
cylinder) as a function of the arc]engthomeasured

from the source. R =0.7825/121".
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Figure 33--Magnitude of the equivalent magnetic current density
on an impedance patch (which partly covers a circular
cylinder) as a function of the arclength measured

Figure 34--Magnitude of the equivalent magnetic current density
on an impedance patch (which partly covers a circular
cylinder) as a function of the arc]engthomeasured
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In Figure 35, Equation (40) is compared with the data obtained
from SCIM.
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Figure 35--The maximum total patch size beyond which the asymptotic
form of the currents in (17a) and (18a) may not be trusted.

. The surface current incident on the edge of the impedance

3 for the TM_ case of (15) is very similar in character to the cor-

) responding“TE_ case. The only essential difference between these

! two cases is that the z_ in the TE_ case is replaced by y_ = Y /Y,
in the TM_ case. Thus,3(40) may b& used for TM_ case of flS) By

simply reﬁlacing z, by Yge z
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It is noted that, (40) is a very conservative upper bound

{ for both the TE_ and the TM_ cases. This is particularly true
for the type of” impedances Ghich can allow an Elliot type of surface
wave mode to exist, since this is the dominant component of the
current and furthermore it remains valid even for distances larger
than t /2. Figures, presented in (12) through (28), indicate that
it is Bossib]e to obtain good agreement between the SCIM and other
independent methods for patch sizes well beyond those allowed by
(40). Typically, it is in general possible to treat half patch
widths of the order of tm with good accuracy.

For impedance patches which are larger than the limiting size
indicated above, one should use the asymptotic form of the currents
given in (17a) and (18a) up to t_ and then <witch to the creeping
wave representation for the currBnts which is explained in parts
(IC) and (IIC) of Appendix B, for the TE_ and TM_ cases, respec-
tively. z z

The component of the current reflected from the edges of the
impedance patch is calculated by simply multiplying the incident
E1liot mode field with a surface wave reflection coefficient R

which characterizes the discontinuity in the impedance at the gdges.
This quantity, Rg is found in(4] via the solution to the problem

of the surface wdve diffraction by a two part planar, impedance
surface. Multiple reflections between the edges of the patch are
then summed in a self consistent manner as explained in section
11B. Plots of R, (corresponding to TE_ case) and R_ (corresponding : {
to TM_ case) are illustrated in Figure§ 6 and 7, re§pective1y as :
a funftion of the surface reactance which is normalized to the '
free space impedance. It is noted from these plots that R_ is C
significantly higher than R_ for values of the normalized feact- ' 1
ance which are less than un?ty. Consequently, the component of i

the current reflected from the edges of the impedance patch is i
expected to play a significant role in the radiation pattern calcu- i
lations for the TMz case.

In general, the SCIM is not expected to be accurate for the
case when the magnitude of the reflection coefficient |R_| approaches

unity. However, as mentioned at the end of section IIB, this is
not a serious restriction on the SCIM since an antenna wi*h such
a large reflection coefficient is not desirable. Under the present
! assumption, the dominant reflected component of the current is
A produced by the incident E1liot mode field. In order for this
' assumption to hold, one requires that the size of the impedance
patch be sufficiently large. From an extensive numerical study,
it has been approximately determined that this minimum impedance
patch length for the case when the impedance surface supports an
Elliot mode field is =/28 where B for both the TE_ and

TMz cases defined in (19g) and (20d) respectively. fhis study
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basically indicates how far the edge of the patch has to be to
lie outside the "effective source regions" where the component
of the currents propagating away from the source are usually large
(due to the singularity at the source). It is noted that m/28

is generally very small compared to t so that the current approxi-
mation employed in SCIM is indeed valTd.
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CHAPTER IV
RELATION OF RADIATION PATTERN PROPERTIES TQ THE PERTINENT
PARAMETERS OF THE PROBLEM

In this chapter the dependence of the radiation patterns on
certain parameters is discussed. It is observed that the number

of labes in the radiation pattern within the 1it region is a function
of the width of the impedance patch and the value of the impedance.

For the TM_ case with a capacitive impedance patch, this number

is primarify governed by the width of the impedance patch measured
in wavelength, A (where as before A=2n/k). A simple ray picture
of the GTD may be employed to explain why the number of the lobes
in the 1it region depends primarily on the impedance patch length.

In this picture, the principle source and the edges of the impedance

patch may be considered as three line sources. For the TM_ case,
these line sources have similar pattern factors. Hence a Simple
array analysis indicates that the number of lobes in the radiation
pattern within the 1it region is approximately given by the fol-
lowing table.

Table 2

Width of the impedance Approximate number of
patch (in X) lobes in the TM_ radi-
ation pattern (*it region)

Less than 0.5 1
0.5-1.5 3
1.5-2.5 5
2.5-3.5 7
3.5-4.5 9

Table 2 is in full agreement with the observed radiation pat-
terns for tge TMZ-case. Having a peak in the broadside direction
(i.e., =0 ) is“a characteristic feature of this case.

For the TE_ case, with an inductive impedance patch, it is
difficult to re?ate the number of lobes in the 1it region to just
the impedance patch length via a simple array analysis because
the pattern factor of the principle source located at the center
of the patch is different from the pattern factors of the equiva-
lent sources of the fields diffracted from the edges at Q, and
?ﬁ.thln general for the TE_-case there may be a peak or a null

e broadside direction®(¢p=0°) and the number of lobes increases
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with an increase in the patch length. Smooth radiation patterns
with single lobe can be obtained for the TM_-case with an inductive
surface, and the TE_-case with a capacitive®surface. It is also
interesting to poinf out that there are lobes in the deep shadow
region of the radiation pattern. These lobes are created by the
diffraction of the waves that creep around the conducting portion
of the cylinder, and the number of lobes in the deep shadow region
depends on the radius of the cylinder rather than the impedance
patch length, The number of lobes in the shadow region increases
as the radius of the cylinder becomes larger; however, the level
of the fields in that shadow region decreases considerably with

an increase in the cylinder size to the point where the strength
of these lobes is negligible in comparison to the fields in the
1it region.

The reflection coefficient, R_ can be used as a gauge for

the lobe sizes, i.e., the ratio be@ween the lobe maxima and minima.
For values of |R_| < 0.9 which is the region of interest in this

work, the lobe séze in the 1it region reduces as the magnitude
of the reflection coefficient decreases. In other words, antenna
structures with high R_ leads to a larger break up in the radi-

ation patterns; this aséect will be discussed further at the end
of this chapter.

Additional useful information about the radiation pattern
can be obtained if one studies the behavior of the far field pat-
tern of the antenna at specific observation angles; namely ¢,=0
and ¢,=90 as a function of the value of the surface 1mpedanc§,
and also separately as a function of the length of the impedance
patch. _In Figures 36 through 41 the magnitude of the field u(0)
at ¢,=0°, and likewise u(90) at ¢,=90° are plotted in dB for both
the TE. and the TM_ cases. The m%gnitude of u(90) in dB for the
relevaht unperturb8d geometries (perfectly conducting cylinders
without any impedance patch) are also included in these plots for
comparison. The plots are normalized such that |u(0)| for the
unperturbed geometry is taken as zero dB.

A striking conclusion one draws from these data is that,
for the TM_ case with a capacitive impedance patch, there are very
sharp maxifiums which are spaced every half electric wavelength,
A./2. In such resonances, one may realize up to 15 dB increasg
ifl the magnitude of the field in the end fire direction (¢g=90")
over that which would exist for the unperturbed geometry. "The TE
case with an inductive impedance patch also exhibits an increase
in the field strength in the end fire direction compared to that
of the unperturbed geometry. However, the sharp resonances of
the TM_ case do not appear to be present in the TE_ case. Some
typica* radiation patterns for the TEz and TMZ cas8s are presented
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Figure 36--The magnitude of the radiation field of a line source
(i1lustrated in Figure 10) as a function of the half
patch size, a¢p/kh.
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! Figure 37--The magnitude of the radiation field of a line source
(i1lustrated in Figure 10) as a function of the half
patch size, a¢p/xh. 3
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in Figures 42 through 45 for both the capacitive and the inductive
type of impedances as well as for the case when there is no im-
pedance patch (unperturbed geometry). The plots are normalized
such that their respective maximums are taken as zero dB.

Finally, one may point out that the value of the surface im-
pedance may be different or it may be the same for different ori-
entations of the sources. An example for the first type of surface
may be a thin material of thickness, d, relative permittivity,
€. and relative permeability, p_. placed on a perfectly conducting
surface. From the flat surface geometry, it can be shown that[23],
the equivalent surface impedance for the TE_ and TM_ cases are
given as follows: z z

= 5k -
Zs = j vh Z0 for TEz case (41a)
.VS
ZS =i ZO for TMZ-case (41b)
where Vh is the solution of the following pair of equations
-ud-cotan(ud) = u V,d (42a)
(ud)? + (v, d)? = (e.-1)(kd)? (42b)

Similarly. V_ is obtained by solving the following equations simul-
taneously

udetan(ud) = eV d (43a)

(ud)? + (v d)? = (e,-1) (ka)? (43b)

A proper combination of d, € and M, may be used to build a surface
which can support Elliot typE modes for both the TE_ and TM_ cases
with desired surface wave propagation constants, Sch a sufface
may be referred to as an "arbitrary polarization surface wave struc-
ture"[24]. In Figure 46, the radiation patterns of a magnetic

Tine source and a magnetic line dipole source are presented. The
source is assumed to be located on an impedance surface which ap-
pears as a capacitive surface (Z_=-j710) for the TM_-case and an
inductive surface (Z_=j200) for the TM -case, so thit the surface
wave propagation conStants associated @ith both cases are the same
(i.e., B=B_=R,=1.13k). The radiation patterns for Z_=j710 and
Z_=-3200 3r Qhe TM_ and TE_ case, respectively, are also included
iR this figure for éomparisﬁn. The plots are normalized to their
respective peak values.
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Figure 42--Radiation pattern of a magnetic line source on a
perfectly-conducting cylinder which is partly covered
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magnetic line dipole source on a perfectly conducting
circular cylinder which is partly covered with an
impedance surface patch. The value of the
impedance is assumed to depend on the
type of the source.
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In Fiqures 47 through 51, additional radiation patterns of
a magnetic line dipole source (TM_-case) are presented for values
of the reflection coefficient, R_ moderatly small. It should
be noted that, these patterns are’much smoother than the ones pre-
sented in Chapter III. As indicated earlier, the radiation pat-
terns in Chapter III for the TM_ case are included in this work
only for comparison purposes.

As indicated earlier, the SCIM can be employed to analyze
the radiation pattern of a source on a general convex cylinder.
In Chapter II, the way to extend the circular cylinder results
to an arbitrary convex cylinder is presented. In Figure 52, this
procedure is used in order to obtain the radiation pattern of a
magnetic line source located on an elTliptic cylinder which is covered
with an impedance surface patch.

In conclusion, the present analysis of the radiation from
a line source on an impedance surface patch which partly covers
a perfectly conducting convex cylinder indicates that for impedance
surfaces which support an E1liot type mode, a moderate increase fj
can be achieved in the radiation intensity near the horizon (6,=90°)
over that which would exist in the absence of the impedance pa%ch.
In general, the radiation patterns associated with those impedance
surfaces which support the Elliot mode are found to be rather sen-
sitive to changes in the operating frequency. Furthermore, the ,
increase in the radiation intensity near the horizon is accompanied
by a ripple in the radiation pattern within the 1it region. The
addition of a small loss and/or taper to the impedance patch would
decrease this ripple somewhat without seriously degrading the radi-
ation intensity near the horizon. In particular, the field strength
at the edges of the impedance patch can be controlled by a small
loss, this in turn allows one to reduce the ripple size. The loss
can be introduced to the solution as a perturbation to the loss-
less case via an exponential decay factor along the propagation
path on the impedance surface. It is observed that the ripple
size, besides being dependent on other parameters (such as patch
length, radius of the cy]inder( is also related to the magnitude
of the reflection coefficient As a rough estimate, an average

R.|.

reduction of 8f2 d8 in the ripp]g size can be achieved upon re-
ducing the magnitude of the reflection coefficient by 3.2 in the
region 0.5 < FR < 0.9; whereas, it is possible to smooth out
the ripples by 322 dB with a decrease in the magnitude of the re-
flection coefficient by 0.2 in the region |[R | < 0.5. For the
TM_-case, the average ripple size at |R_| = 8.7 and IR.] =0.9
is’8 dB and 18 dB, respectively. Simildrly, for the Téz-case,
the average ripple size at |Rhl = 0.1 and thI < 0.3 is 8 dB and

12 dB, respectively. It may be possible to reduce the reflection
coefficient by tapering the impedance patch without drastically
changing the actual antenna structure, thereby reducing the ripple
size in the radiation pattern within the 1it region.
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Figure 47--Radiation pattern of a magnetic line dipole source
on a perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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Figure 48--Radiation pattern of a magnetic line dipole source
on a perfectly-conducting circular cylinder which is
partly covered with an impedance surface patch.
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The present analysis based on the SCIM constitutes an exten-
sion and improvement over the earlier GTD analysis [2] which was
restricted to only those impedance surfaces which support an Elliot
type mode and for which the E11iot mode propagates with negligible
Teakage on the curved impedance patch. These limitations of the
GTD solution are absent in the SCIM. While the SCIM in it's present
form appears to be quite accurate in it's fairly broad regions
of validity, further work is recommended to remove some of the
minor restrictions which currently exist (as outlined earlier)
and also make this solution applicable to a wider class of problems
than the one treated here.

v
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CHAPTER V
CONCLUSIONS

A high frequency solution is developed for predicting the
radiation patterns of sources on a perfectly conducting convex
cylinder which is partly covered by an impedance surface patch.

It is expected that this study will be useful to the design of

on aircraft antenna which can be made to radiate strongly in the
vicinity of the horizon by impedance loading. Such an antenna
structure excited by a crossed slot on an aircraft fuselage can
find applications for satellite communications. Thus, it is im-
portant to develop a theoretical model for this type of an antenna
in order to gain a better understanding of the effect of the im-
pedance loading on its radiation pattern. It is also interesting L
to point out that this theoretical model may be useful in the design L
of antennas which will radiate strongly only in the broadside di- (4
rection and shed 1ittle energy in the horizon and in the shadow
region of the antenna.

The surface impedance concept is an approximation for certain E
types of surfaces, such as thin dielectric layers, corrugated sur-
faces, slightly rough surfaces, and imperfectly conducting surfaces.
The value of this equivalent surface impedance associated with
these surfaces may depend on the orientations of the source. It
is pointed out earlier that the arbitrary polarization surface
wave structure could be an example for this type of impedance sur-
faces.

The analysis of the two dimensional (2-D) problem of the radi-
ation by a magnetic line source (TE_ case) and a magnetic line
dipole source (TM_ case) on a perfeftly conducting circular cylinder
partly covered wifh an impedance surface patch is employed in this
work to simulate the 3-D crossed slot configuration. It is noted
that the radiation pattern of the 3-D configuration would be the
same as the one for the simpler 2-D case in the roll plane con-
taining the slots, provided the effect of the wings are ignored.

The basic approach applied here for the solution of the 2-D prob-
lem is called the surface current integration method (SCIM). The 3
SCIM is an important extension and generalization of some of the

earlier solutions based on the Geometrical Theory of Diffraction

(GTD) and the hybrid moment method (MM)-GTD technique for anal.zing

this problem. The previous GTD solution was restricted to those
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types of impedances which support an Elliot type mode for a given
source orientation; whereas, the SCIM can be used for an arbitrary
uniform impedance surface for both the TE_ and the TM_ cases.

The MM-GTD solution obtained previously fbr the TE_ cése is suf-
ficiently general (includes non-uniform impedance §urfaces) and

is accurate; however, the SCIM leads to a far simpler and more
efficient solution. On the other hand the MM-GTD solution for

the TM_ case contains integrals which are very difficult to evaluate
numeriEa]]y; whereas, in the SCIM, the TM_ case can be handled

as easily as the TEZ case. z

In the SCIM, one integrates the equivalent surface current
densities on the impedance patch in conjunction with an accurate,
asymptotic form of the perfectly conducting, convex cylinder Green's
function. The relations between the far field radiation pattern
of the sources and these integrals are obtained via a generalized
reaction theorem as explained in section IIA. The form of the
equivalent surface current densities are found from the canonical
problems of Appendix B. In these canonical problems for the TE
and the TM_ cases, it is assumed that the cylinder is completel
covered by“an impedance surface. The finite length of the impedance
patch is, then, introduced later into the solution by a self-con-
sistent procedure for summing up the fields reflected from the
edges of the patch as presented in section IIB.

The SCIM can also be used in the solution of crossed-slot
antennas located on an arbitrary polarization surface wave struc-
ture as long as the coupling between the TE_ and TM_ surface wave
(or Elliot) modes is negligible at the edgezof the &tructure so
that the performance of each of the antennas can be analyzed in-
dependently as in the ordinary, single valued impedance surface
case and these results can then be superimposed to yield the total
radiation pattern.

The effect of the different parameters on the radiation pat-

tern for both the TMZ and the TEZ cases can be summarized as follows:

TMz Case:

1) The capacitive impedance surface (i.e., Z_=-j|x_| where
x_. is a real number) supports an Elliot mode field>for this polari-
zStion; hence, it is possible for 8his case to guide more energy
into the end fire direction (¢,=90") i.e., near the horizon. It
is observed for the Elliot modg case that the antenna patterns
become increasingly frequency sensitive for those values of Z

=-j|x | for which |x.| is small. s

81

e p——— e . e e e e ———— .

L e mara e




2) The Elliot mode reflection coefficient, R_ approaches
unity as the capacitive impedance surface tends to’the perfectly
conducting case (i.e., as |x_.| becomes small). Antenna structures
with high reflection coeffictents generate badly broken radiation
patterns with deep ripples.

3) An indu~stive impedance surface does not support an Elliot
mode, hence the field strength in the vicinity of the horizon is
much lower than that obtained with a capacitive impedance surface.

4) In the case of the capacitive impedance patch, the number
of lobes within the 1it region increases as the width of the patch
increases.

5) Inductive impedance patches generate smooth radiation
patterns.

TEZ Case:

1) The inductive impedance surface (Z_=j|x |) supports an
E1liot mode field for this polarization. AR incFease in the field
strength near the horizon is possible for this type of impedance,

2) The Elliot mode reflection coefficient, R, increases as
the value of the inductive impedance increases. Hgnce, inductive
impedance surfaces with small |xLl Tead to smooth radiation patterns.

3) The capacitive impedance surface does not support an Elliot
mode, hence the field strength in the endfire (horizon) direction
is much lower than that obtained with an inductive impedance surface.

4) In the case of the inductive impedance patch, the number
of lobes within the 1it region increases as the width of the patch
increases.

5) Capacitive impedance patches generate smooth radiation
patterns,

82




- it M it ot <t s i <t -
= iemen s e ——

e ¢ N e e = i —————rt =P o+

APPENDIX A

AN ANALYSIS OF THE RADIATION FROM LINE SOURCES ON AN
INFINITE PLANAR IMPEDANCE SURFACE

In this appendix, the radiation from line sources on an infi-
nite planar impedance surface is analyzed. The geometrical config-
uration of the problem is illustrated in Figure 53. Two different
source orientations are discussed. The first of these is for the
case of a z-directed magnetic line source excitation, which will
henceforth be referred to as the TE_ case; this case is treated
in Section I below. Likewise, the freatment of the case of an x-
directed magnetic line dipole source type excitation, which is hence-
forth designated as the TM_ case, is dealt with subsequently in
Section II. z

y MAGNETIC LINE SOURCE

Ql
(0,0) Q
A

(x,0)

\IMPEDANCE SURFACE

(a) TEz — CASE

Y MAGNETIC LINE DIPOLE SOURCE

/ :
(x,0)

&IMPEDANCE SURFACE

(b) TMz — CASE

Figure 53--Geometry of the canonical problem of a line source
on an infinite, planar impedance surface.
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I. TE, or Magnetic Line Source Excitation Case

_ The magnetic source density for this polarization is denoted
by M; it is given by

M=2M8§x) 8y) (A-1)

where M is the strength of the source and is assumed known. The
magnetic field generated by such a source has only a z-component
and it will be denoted by H_. H_ satisfies the reduced, inhomo-
geneous wave equation, and fhe f6110wing boundary conditions:

(V§+k2)HZ = jkYOMG(x)G(y) i 20, [x|<e (A-2)
aHz
Fn— + (thZ =0 at y = 0 (A-3)
where
Zs
a, = - Jk 7 (A-4)
0

For the problem of interest, is chosen to be a real number (i.e.,
Re Z_=0); however, the method of solution is applicable to complex
a, aS well. The impedance boundary condition given in (A-3) can
asymptotically be obtained from the more general form of the bound-
ary condition given in (5a) with the aid of the Maxwell's equations.
Z_=1/Y_ is the surface impedance, Z = Y © js the free space im-
pédancé. V. is the two dimensional Eap]aejag operator. Also, H
satisfies tﬁe radiation condition for an e*" time dependence. z

In the process of solving (A-2) one defines a two-dimensional
Green's function, G(x,y|x',y') such that

Ho(x,y) = -3kY M G"(x,y[0,0). (A-5)

Gh(x,ylx',y') is the solution of (A-2) for a -8(x-x')8(y-y') type
source term on the right. It also satisfies (A-3) and the radi-
ation condition. Using the procedure for constructing higher dimen-
sional Green's function as in[25], one obtains,

o e -ijZ-kfy-jkx|x|
6"(x,y]0,0) = e
(x,y]0,0) Vi1 I dk (A-6)
“=9e (Pl + )
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where ¢ is a positive but otherwise arbitrarily small number. The
proper kX sheet associated with the integrand of (A-6) is one for

which ImJEz-k3<0 with branch points at k. The integrand also has

poles located at ktp =t/k2+a2 on the proper sheet for Im ZS>0. These
properties of (A~3§ are 111u§trated in Figure 54.
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INTEGRATION LOCATION

M —ofbe

Figure 54--Contour of integration in the complex kx-p]ane.

The expression in (A-6) can also be represented as a perturbation
Jf the fields on the perfectly conducting surface as follows:

h _ .h h
6 = Gc + Gp (A-7)

where Gh is the green's function for the perfectly conducting ground
plane; $t is given by

I N EY
h_ 1 Sk X
6 = : ke =35 HE K x)). (A-8)

cTm L. 5= ¢
e il

Gg is the perturbation Green's function and has the following form
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4 "

-k |x]
e

\ R | =Je
Gp = -Jah ??Jr dkx (A-9)

leje 22 ([T 3.,
k22 ok -k2ejo,]

In both (A-8) and (A-9), the observation point is brought on
to the impedance surface (i.e., y=0).

The two alternative expressions for the Green's function given
by (A-6) and (A-7) may be approximated asymptotically. The asymp-
totic evaluation of (A-6) is discussed below in part I-a and that
of (A-7) is discussed in part [-b.

a. Saddle Point Approximation

In the asymptotic evaluation of (A-6), it is convenient to
begin by introducing the following polar transformations:

kx = k cosn ; dkx = -k sinn dn (A-10)

and

LT T —"

X = pcos¢ ; Yy = psSing (A-11)

The transfgrmation in (A-11) is shown in Figure 55. The Green's
function G of (A-6) is now expressed in the complex n plane as

h 1 f(n)Q

G =-— Fh(n)e dn (A-12)
’ 2nj ¢
9 where
& Fo(n) = nn (A-13)
| h - . -1
. s1nn+3ahk

and
f(n) = -j cos(n-¢); 9= kp. (A-14a); {
(A-14b) }

: Q is the large parameter in this asymptotic development. The contour e
‘ of integration c is indicated in Figure 56.

np and np are the poles of (A-6) in the complex n plane.

1 2
By setting the denominator of (A-13) to zero, one can easily show
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Figure 55--Polar and rectangular coordinate systems.
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Figure 56--Contour of integration in the complex n-plane.
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Lo, /k) and n, =n+j sinh™ Y
h P2

point is denoted by n_, and it is the solution of f'(n)=0. It

can be shown that n_ ="¢ for (O<¢<m). For the special case when

the observation poiﬁt is on the impedance surface (i.e., ¢=0),
n_=0.
S

uh/k). The saddle

that ny  =-j sinh”
1

Using the results of Felsen and Marcuvitz[26] one can obtain
an asymptotic solution for (A-6) as follows

Hf(n)

" Re - 2nJ

2
[:mﬁe'ﬂb Q(F3bfR) +

-f<n>9}, a = lim [(nnp )F,(n)] (A-15a)

n"npl 1 rr*npl 1
(1 Im b>0
b=[fing) - fln ), e-= {0 for {mm beo (A-15b)
P1
© ? J_
Ay) =J e dx =3 erfc(y) (A-15¢)
y

where erfc is the complementary error function. Alternatively, sub-
stituting (A-13) and (A-14) into (A-15), with ns=0, yields

. . . 2
h. Ppo "By - jkx [+ Bh o wib. i -kxby,
G - B—h—- e €h + e - 'B—F Q(+th kx)e
1 L jxh ] >
S - — W—- ——1; Im b,<0 (A-16)
anj kx Bhbh h

(A-16a)




e ° {é} for (ah20) or (Im bhzo).

b. Asymptotic Evaluation of the Perturbation Green's
Function Representation

The first term in (A-7) was readily evaluated in (A-8) as the
Green's function for the half-space with a magnetic line source
located at the coordinate origin. The effect of thﬁ impedance is
represented by the perturbation Green's function, G_ which is given
in (A-9). As indicated earlier, the integrand in (R-9) has poles
for positive values of a,. In the process of evaluating (A-9),
one defines a new quanti@y as follows

h- I e e—kale

67 = -jal a— dk (A-17)
P hem e je[2 21 [ k24 ia” ]

K2k L%k dor
where ap ==~ o],
Through a simple manipulation, (A-9) becomes
6" = -2ja, 1 e O dk + 6N (A-18)
= -2ja € + . -
h2rj “h Lo e (k2+a§)-k§ X p

The first term in RHS of (A-18) can be calculated by enclosing
the contour in the lower half complex k_-plane and evaluating the
residues enclosed. Hence, (A-18) becoméds,

(A-16b)

h _ jah -thIXI h™
Gp = - Bh e eyt Gp . (A-19)
The integrand in Gh has no poles on the proper sheet, therefore
it can be rewritten as Pollows:
WL W) [Ty S
Gp =73 £ Ho (kJt“+x") e dr (A-20)

where the relations

-j[lkz-kf + ok

I S 4t

2 2 3 L
. - 0

k -kx+3mh
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and . 'ka|X|'JT'k2'k§
2) - e ;

ng)(k T +X

are employed [26] in the integrand of (A-17) to arrive at (A-20).

For large values of o and x, (A-20) can be evaluated by the
large argument approximation for the Hankel function as

S T T [E TR L ) I

h .
Gp Z—J' fo Tk Tx dr. (A-Zl)
Q
. , . - .h [t
Next, introducing a new variable z = [jk (X + J— {5 }, one can
show that (fEE k j;~)
Qh)
- L - =gk x|[{1 + — - -
h J J 2 Ja
G ~ - 3% 2k ([ h} )
p° LU aQf j ’k]x' s x|+ (A-22)
kST 17 « ’

For small values of a;, the i.tegral in (A-20) is slowly conver-

gent; however, one could overcome this difficulty by expanding Gh in
a power series of “h as follows,

h‘ .- 1 °°-j€ -kalxl 1
U T D S S
p h 2n7j —oo- je X (kzﬂﬁ)-kz
X
Jap
- h J (A-23)
2 .2
k“-k [ M

Evaluating the first term in (A-23) by the calculus of residues, and
expanding the second term in powers of ay, yields
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- iyl aﬁ wde Il

Gg j-z-—e Im-je
(!2 (!4
_,2_1_2_372 -_2_"_2_57? +_2.h_,z_m + ] (A-24)
(k°-k2)  (Ko-k) (K°-k%)
or
- 2
- op Byl H Jah (2)
o T an v )

(A-25)

In obtaining (A-25) from (A-24), the relation

jk |x|
co-jg =J P
.r = 1 Klx p- HéZ)(k'xD; p=1,2,3,...
is used.

A closed form expression for (A-25) may be obtained for large
values of x. To this end, one uses the asymptotic approx1mat1on
for the Hankel function and rearranges the resulting series in (A-
25) which yields

2 2

(1 +2) 32w

_ - c - =jk|x — § =N k|x

o Ba BlX] oy 2k2 z_e 2k?
- n fe;
.3 2 [ ] K 2"+1 (A-27a
I rofm [ )

or

_ - _ - -jk|x|(1+ )
b1 Bplx|] 3
B Balxl Jay 22 ([ ]{'—u)

o "B,

(A-27b)
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—cate

Since (A-27b) is derived for small values of a?, one can approxi-
s

in the denomi-

mate B, ~ k for the ampli udezterms (i.e., when B
ﬂs (i.e., when

nator), and by BB - k(1+a?/2k ) for the phase ter
n

it is in the expOnent). This approximation yields
(o3 g
N ALl | Ry i %
P kdw k{2

h” The above analysis shows that regardless of the value of a,
GP IhTs the same form as given by (A-22) or (A-28), for large vglues
of |x]|.

Substituting (A-27) or (A-28) into (A-19) and substituting
this result and ?A-B) into (A-7) yields

. . . - ..,2
Jap -3B8] [ ja : -k|x|b
h h h h__-ik|x| ( )e h
G ~=- z— e e *|- e Q{j b ,k X +

+,§3 h{?) (klxl)] (A-29)

where -
o [

B, = % (A-29a)

As indicated earlier, (A-29) is valid for both small and large
values of a., when |x| is large. It can easily be shown that (A-
29) goes to the saddle point approximation of (A-16) for small values
of a, and large values of |x|. On the other hand, for small values
of |9|, the Hankel function in (A-29) will dominate and provide
an adequate description of the current near the source. Thus Eq-
uation (A-29) is an asymptotic approximation of the Green's function
which also remains valid in the vicinity of the source for all values
of a,; whereas, (A-16) is an asymptotic approximation of the Green's
func@ion for large values of x.

II. TMz or Magnetic Line Dipole Source Excitation Case

The. magnetic source density for this polarization is denoted
by'Md, and it is given by

W% = X Mg 8(x)8(y) (A-30)
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where M, is the strength of the source which is assumed known.

The tanﬂentia] magnetic field generated by such a source has only
X-component and it will b? denoted by Hx‘ H, 2 can be obtained from

the only electric field E. generated by an effectric 1ine source

T =% 15(x-x")sfy-y'). FHere, 1 is the known strength of the electric
line source. E_ satisfies (A-2) and (A-3) with the exception that

YOM is replaced“by ZOI and a is replaced by ag respectively, where

Ys

as = -dk 72 (A-31)

EI also satisfies the radiation condition for an tvzj“’t time depend-
efice. With above changes, (A-5) becomes

EX(x*,y") = -JKZ,I65(x",y" | x,y) (A-32)

63 corresponds to 6" of the TE,-case, and using the procedure of [25],

one can show that
1 0 Cyey) -3l (yray)
65(x",y'|x,¥) = 5w/ ¢ Ree

o[
2]k2-kf

dkx; y'>y (A-33)
where  R_ = (Jk2-k2 - ja ) (koK + ga )L

and y'. It is no surprise that (A-6) is the special case of A-
33) when y=0 and a. is replaced by u?. The magnetic field, Mxx

generated by T can be found from VxE Z=-juy AL, The electric field,
E. Z generated by M of (A-30) can ?5w be fund from the reciprocity
theorem which yieldd I 3.E = -M &I, Making use of the other

Maxwell's curl equation, H = -(quo)-l[VXf+ﬁd] it can be shown that
H (x.y) = -3kY M, 6%(x,¥/0,0) (A-34)

7 -1 gk x
e dk

The case for y>y' can be obtained from (A-33) by 1nterchangin? y

where

Jag 1 =de JKPk

6°(x,|0,0) = 7 % X

X

(A-35)
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The contour of integration in (A-35) and the branch cuts in
the integrand (A-35) are the same as i re 54. The integrand
in (A-35§ has poles located at k; = | k“=a_ on the proper sheet
for the positive values of ag- P s

The expression in (A-35) can also be represented as a pertur-
bation of the fields on the perfectly conducting plane surface as
follows:

S _ pnS S
6% = 65 + G (A-36)

where G5 is the TM type Green's function for the perfectly con-

ductingcground p]aﬁe; it is given by
. , (2)
s 1 1 T ' 7 7 Jdkx] oy HT(k|x])
GC = m ? {m-je k -kx e dkx = -23!' ————————klx' .

(A-37)
GE is the perturbation Green's function, and it has the following
fbrm:

- 2,2 :
. . %—. w-je KO-kl e-kalxl
P 7n]

dkx (A-38)

-o=je ,2,,2 ,2,.
k“(fk -kx+Jas)

In both (A-37) and (A-38), the observation point is brought on to

the impedance surface (i.e., y=0). The integral in (A-35) will

next be asymptotically approximated via the saddle point method

in pgrt 11-(a); likewise, the perturbation integral corresponding

to Gp in (A-38) will be asymptotically approximated in part II-(b).

a. Saddle Point Approximation

Equation (A-35) will be asymptotically evaluated in a manner
similar to that in part I-a of this appendix.

Substituting the transformations (A-10) and (A-11) into (A-

35) yields
f(n)a
s 1
G° = - 2—“‘]: { Fs(n) e e 1} (A-39)
where j“s sin2
Fo(@) = 2= (A-40)
sinn+j el

and f(n) is the same as in (A-14).
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Figures 55 and 56 are also the same for TM_ case with the_fxcep-

tion that the poles of (A-40) are now located af np. = ~jesinh (as/k)
and np_ = 4] sinh'l(as/k). Changing the subscriptlor superscript
2

"h" to "s" in(A-lS)sthrough (A-15c), one arrives at an asymptotic
representation of G°. The final result has the following form

3 3 2
Jai  -38|x| [Ja -Jkxb
s s s -Jk| x| s 3 s
-~ - — €.+ e t——2—0(+Jb/kX)e +
"235 s KBJT /¥
1 T Jag >
o ’kTTX s i ImbZ o0 (A-41)
where $s
Ja B8 =35
bs = ES ('Fi ¥ 1) » B ka2+°§ (A-42a)
€ ={(1)} for (aszo) or (Im bSEO) (A-42b)

b. Asymptotic Evaluation of the Perturbation
Green's Function Representation
The alternative representation gn (A-36) will now be evaluated.
It is already shown in (A-37) that G_ is the Green's function for
the perfectly conducting plane surfafe with an x-directed magnetic
line dipole source located at tge coordinate region. The impedance
effect is then represented by G> which is given in (A-38). 1In the

process of evaluating (A-38), ofle first separates the pole contri-
bution as follows.

2,2 .
65 = - ol ;'je K My e
P &y “o-Je 2,[,2 ,2,. - K
k“(J k -kx+Jax)
[ [T—?_—zhg 2ia e ¥ g (A-43)
- [v] e -
-o-je :2 k ms-ki s X
where a. = -|a |. The last integral in (A-43) can be integrated ‘
via theScalculds of residues.
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Next, incorporating the following relationships

. 2_,2

2 =gk, Ix k=-k -Jk_ |x

(1 + %TET;Ty) e x| =— X e 1 (A-44a)
k

and
J
1 =1 %s (A-44b)

X PN Y (U AR T

into the first integral of (A-43) yields

woje

2
s _ d 1 (2) —ig 3
Gp = -(1 + _—d[k|x|]2) [-—Jrz Hy (k|x|) +{ Jag ¥ lrw-Je

-3k, x|
oy
Jk -ki [sz-k§+ja;]

2
+ -—Eﬁ 6(k|X|)es .

Comparison of (A-17) with the term in the curly bracket of
(A-45) shows that they are_the same with the exception that in the
latter is replaced by og - Hence the evaluation of (A-17) leading
to the r8sult in (A-22) is’equally valid for the integral in (A-

45) as long as all of the superscripts and subscripts in part I-
b are replaced by "s" in the present development. With the above
commegts in mind, one can now readily write an asymptotic expression

p

for G2 by substituting (A-22) or (A-28) into (A-45).

2
6 {1+ — )| wlP«
; ( +d[klxl]z)[""" o (b

- ~2 .
Ja - -k |x|b

- Sk Ix| q(s6 JkTxl) e | S]-
kdm

2
+__;s_ 8k [x])eg




The term involving the Q function in (A-46) can be written as follows

Ja 2

< - -k |x|b:
S -Jklxl S
— e Q(jbsfk e =

kfr
= %3[]% e'Jt]Zz e22 Q(2) (A-47)

where 2z = jss.]klxl. The term inside the brackets is recognized
as the large’argument approximation of the Hankel function. Hence
one can conjecture a different asymptotic form for (A-46) as follows

? 2
% (1 ' ddklxu?)[%?f o klx)) - 33 W (kix2z e a2)| -

Joig -stlxl 2a,
B
S

This conjecture can be justified if one notes that as the admit-
tance tends to infinity correspondéng to the case of a perfectly

conductingzground plane then 2z e? Q(z), tends to unity (i.e.,

&1m¢ 22 2 Q(z) = 1) for x#0. Hence, the first two terms in (A-
s

48) cancel each other as a_+», The addition of a small loss in
the medium for (y > 0, |x|<=} nullifies the surface wave as a s,
thereby resulting in a zero contribution from G2 term to G°.

Hence, in the limit as thesimpedance'surface goBs to the perfectly
conducting ground plane, G becomes:

H(Z)(k x|)
1im 65 =65=1 —1-——|-|— . (A-49)
agre k|x|

| x| #0

which is the desired result for TMz case.,

Finally substituting (A-37) and (A-48) into (A-36) yields:




H{2 (k)x])

2a
€ + —E-S' 5(k|X|)€S + %3' TRTX-‘——-

2
25 HiZ) (k|x|) * {i - 2z ¢ Q(z}]
(A-50)

where as before z = jbk|x| and b_ is defined in (A-46a). The first
term in (A-50) correspﬁnds to the Surface wave field.
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APPENDIX B
AN ANALYSIS OF THE RADIATION FROM LINE SOURCES ON A CIRCULAR
CYLINDER COMPLETELY COVERED WITH AN IMPEDANCE SURFACE

In this appendix, the radiation from line sources on a circular
cylinder covered with an impedance surface is analyzed. The geo-
metrical configuration of the problem is illustrated in Figure 4.

Two different source orientations are discussed. The first
of these is for the case of a z-directed magnetic line source ex-
citation which is illustrated in Figure 4; this case will be re-
ferred to as the TE_ case and it is treated first in Section I below.
The second source ofientation refers to a ¢'-directed magnetic line
dipole source excitation case as shown in Figure 4. Henceforth,
the second case will be designated as the TM_ case and it will be
dealt with subsequently in Section II. z

I. TEz or Magnetic Line Source Excitation Case

The magnetic source density for this polarization is denoted
by M and is given by

W= gy oles2lie) (8-1)

where M is the known strength of the source and a is the radius

of the cylinder. The magnetic field generated by such a source

has only a z-component and it will be denoted by H_. H_, satisfies
the reduced, inhomogeneous wave equation, and the fol]oﬁing boundary
conditions:

2\ 8(p-a)8(¢) . p>a
(v% + KEH, = JkY M iﬂs_l_iﬁl : 0<o<2m (B-2) I
and
H,
Tp-+uth=0atp=a (8-3)

where °bj2ﬁ given in (A-4). Also H_ satisfies the radiation condition
for an time dependence. For sﬁlving (B-2) one defines a two-
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£ dimensional Green's function, Gh(p,¢|p' ¢') such that

[
| Hy(0:0) = ~3kY M 8"(0,0[2,0) (8-4)

Gh(p,¢Lp',¢') is the solution of (B-2) with -8(p-p')8(¢-4"')/p
the source term on the RHS. It also satisfies (B-3) and the ra-
diation condition. It can be shown that the Green's function has
the following form [ 26]:

. (1)
- -] QpH, (k)
ooloe) = -5 1 m[H\f”(kp')-%y—— {2 o]

~o=Je Qth (ka) v
- WD (k) COUmlee']) (8-5)
3 Cp

where Qh“m +E_.

One may write

cos v n-]tg'j_)ﬂ. E [e-jvf¢-¢'| + e-ivcp'] e-Jv(2ne) (B-6)
2=0

S1nyy

‘ where ¢ =2n-{¢-¢'|. Physically, the above series corresponds to
multiple encirclements of the field around the cylinder in the azi-
muthal propagation representation for Green's function of (B-5).
Since one is interested in applying the results of the present anal-
ysis to perfectly conducting cylinders with an impedance surface
patch, the effect of these multiple encirclements will be neglected
with the exception of the ray which will travel the shortest dis-
tance between the source and the observation points, i.e.,

(cosv(n-|¢-'|)/sinr will be replaced by je'jv|¢'¢'| in (B-5),

yielding
Ponslotet) - -4 T wfilDikon Qﬂféi;iiil—
psd[p'st') ~ - ‘-
8 -0~ je v Qhﬂvz (ka)
HSZ)(kp-)]H§2)(kp) allad (8-7)

From here on, Gh in (B-7) will be refenred to as the Green's func-
tion and it will be used in place of G' (for example Equation (B-

4) now will read H,(0,6) = -3kY M G"(0 $| a,0)). One notes that
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the contributions from higher order encirclﬁments to G in (B-5)

can be found simply by replacing |¢-¢'| in G of (B-7) with |¢¢'|
+2n( or)with (2r-|¢-¢'|)+2n2 and summing them up over & as indicated
by 8-6 .

The expression in (B-7) can be represented as a perturbation
of the fields on the perfectly conducting cylindrical surface as
follows:

h _ sh h -
6" = 6 + 6 (B-8)
where Gh is the Green's function for the magnetic line source in
(B-1) when it is placed on a perfectly conducting cylinder; it is
obtained from (B-7) upon setting @ = 0. Thus,

(2)
oje H'%7(ka) :
h_ 1 -
6 = 75 Joic d(rﬁ)ﬁ?)"(j) ool (62
\V

Following an analysis which is based on some earlier work by
Hass?rji§n and Ishimaru[19], one obtains the following approximation
for (B-9):

G: ~%—5 H((Jz)(kalcb]) [1 - i}l g3/2 + %-G 53 +

+ Z{§§3 /2 4 ...] (B-10)

1/3
where £ =('§-9- [¢] °

Gh

is the perturbation Green's function and it is given as
follows:

J ©Je 5
h - L i d(ﬁ)Pv(ka;ah) P, (kas;0) P11 (B-11)

where

2
Hi ) (ka)

P, (kasay) = (B-12)

ng)'(ka) + ;ﬂ Hiz)(ka)
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The prime over the Hankel function in (B-12) indicates differen-
tiation with respect to the argument. In bath (B-9) and (B-11),
the observation point is brought on to the surface of the cylinder
(i.e., p=a).

In the process of evaluating Gh in (B-11), one encounters the
problem of expanding the Hankel funBtion in an asymptotic series
for the different ranges of the parameters involved. In the im-~
mediate neighborhood of the source; that is, when ka|¢| is small,
the main contribution to the inteyral in (B-11) comes from the 3
values of v which satisifes the inequality |v-ka|>0(m) where 2m=(
ka) is taken as the large parameter. The Debye asymptotic expansion
is the most suitable representation for the Hankel function for
small values of ka|4|. If ka|®| is moderately small then one em-
ploys the Watson approximation for the Hankel function. The Watson
approximation corresponds to the values of v such that |v-ka|<O(m).

A third representation referred to as the creeping wave rep-
resentation for the fields can be found by evaluating (B-8) via
the calculus of residues. This creeping wave solution is rapidly
convergent for large values of ka|$é|. One points out that the Debye
approximation presented below goes to the Watson approximation for
v~0(ka), and that the results obtained from the Watson approximation
for the Green's function blend with the creeping wave representation
for moderately large values of ka|¢].

Equation (B-11) will be evaluated firstly by the method of
Debye approximation in part Ia of this appendix. The Watson approxi-
mation and the creeping wave representations of (B-11) will be
carried out subsequently in parts (Ib) and (Ic) respectively.

a. Debye Approximation

This asymptotic expansion is valid for large values of the
argument, ka, and the order, v, of the Hankel function such that
|v-ka[>0(m). Then, it can be shown that [27,28]

-jv(tamn-n) - j % "
[1 . (-1—2)} (B-13a)

’% vtan n v

2 .
H& )(ka) ~ J €

and

, - -jv(tann-n) +j s v
H\(,Z) (ka) ~ -j ’———51::“2" e 4 [1 - 3—1- + 0(37)]
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where n is a fixed positive number and cos n = v/ka. Also, uy
and vy are given as

U = - %I (3 cot n + 5 cot’n) ; vy = %; (9 cot n + 7 cot’n)
(B-14)

After substituting (B-13) into (B-12) and rearranging the terms, one

arrives as
u
1 1
. 1'3‘*0(;2—)
P (kaja, )~ —
v h ] . ap -1
simt] 'S vlsinn+jahk u 4 1
1- | v*o(-z)
sinn+jahk v

(B-15a)

Carrying out the division in (B-15) and retaining only the terms
up to and including terms of order 1/v with respect to unity and
using (B-14) yields,

j j 1 coS 1
P (kajay )~ — [1+ 8 ~ ——"1+0( )
v h sinn+jahk'1 Zsinzn sinn+jahk Loy ;f
(B-15b)

Substituting (B-15b) into (B-11) and performing the indicated multi-
plication between P“(ka;ah) and Pv(ka;O) leads to:

h h h 1 1
6.6 +g ()+o( ) (B-16)
P Po P ka [ka'_l2
where
o-je -Jea|e|
T : (8-17)
and
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ja kb

o je 2. ? .

- je 2
(kZ-EZ)Z[Jk ~§2+§ah]

e-JE2[6,

(8-18)

A change of variable, (i.e., & = v/a) has been introduced in
the above equations, and it is recongized that cos n = v/ka and

sinn =~fk2—§2/k. Comparison of (B-17) and (A-9) reveals that these
two equations are indeed identical with the exception that the
distance, |x] between the source and the observation point on the
flat surface in (A-9) is now being replaced by the arc length a|¢|
on the surface of the cylinder. Hence, the same argument presented
in Appendix I can also be used here for {B-17); this results in

. . . - -.2
ja,  -jBpale| Jo . -ka|¢[b
U g—ﬁ e M € - —fg o Jkalo] Q(jthka1¢1)e h
Po h k{7
(8-19)
where, as before
A X S P (8-19a)
h ap 5 by = U5 oy 7 -layl
and
e ='{é}for a, %0 (B-19b)
In order to evaluate Gg , one rewrites (B-18) as follows:
1
3 ®-je .
h _ k -jcale| [ 1 1 1
G, = - [ de —_——y + -
LT e 022)?  ol (2e?)
-1 (1 o %) — } (B-20)
op h jkz-Ez[jk2-€2+jahJ

residues. The last term in (B-20) can be written in terms of G

The first two terms in (B-20) can be evaluated using calculus oﬁ
of (B-17), leading to P

0
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L, .2 kG:
Ggl - i&i {e-jka|¢| (L*.%Eﬂﬂ ;2. + 1) +2 (1'“h %"_h) 3a_ho
Q
h

(B-21)

The explicit form of the derivative term in (B-2) can be found by
simply differentiating (B-19) with respect to ap, resulting in

kG

2
d I Pt (. kap  -38palel  Jop [ikae| -jka
*h & | T, -(Jf’ht*l);r ¢ o+ [ dgarel ealel
h

. 2
Joia

: Zh [¢]
kJw

In the process of deriving (B-22) one uses. the fact that g&; Q(th

- kbpalé|
[xale]y = ¢ %.jlké%&l e , which is the consequence of the 2 1
definition of the Q function (see (A-15c)), and %E erfc(z) = "%ﬁ e ?.
It may also be pointed out that ap/ay = ¥1; ahzo.

. -kB2
ekalel o, fkagpe M1t a2 (8-22)

b. Watson Approximation

The Watson approximation is valid for the large values of the
argument, ka and the order, v of the Hankel functions such that |v-
ka] <0(m). For such values of v, it can be shown that [28]

H{?) (ka) - i]% wy(0) (B-23a)
and
12" (ka) -- iﬁj%- w3 (o) (B-23b) |

where




1/3
R (53) (B-23c)

Wy(0) = [F[Bi(0) -j Ai(a)] , wy(o) =f7[Bi'(0) - j Ai'(a)]

(B-23d)

Ai(g) and Bi(o) are the Miller type Airy functions. Substituting
(B-23a,b) into (B-12) yields

1

Pv(ka;c.ﬂ)- - (B-24)

1 o
m Y2(0)-

where wg(o) is the ratio of wé(o) to wz(o) and has the following

asymptotic form
w(o) 1 1

Substituting (B-25) into (B-24), expanding (B-24), and retaining
only the terms of order 1/ka leads to

. 1 1 1
Pv(ka,ah)~ - —————-_1 o [1 + il N .
m -,6‘ X (m'lﬁ)z[m'lﬁ— 'E't.]
1 1
[ka]
Substituting (B-26) into (B-11) and keeping only the terms up to
the order of 5 leads to
[ka]
h h h (1 1
~ + — -
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and

-jkale| Jeo 2[5+ jfia K% 1al«bls
h 1 e h 7

G =4 3fi c.“rk ds e
o3 & R Sy Ry ML

(8-29)

In the process of obtaining (B-28) and (B-29) one employs a
change of variable s = -,12(3l - k). In the s domain, (B-23c) becomes

o= -i-'% s, and naturally, m 15 = Jis/k.
Equations (B-28) and (B-29) are in the form of an inverse

Laplace transformation. Equation (B-28) can be readily evaluated
using standard Laplace transformation tables [28]:

: 2
G:o = - ;gﬂ e-Jkale| o (j [%]]kar—“) e-kalcpl[ﬁah:jji |

Jo,
Since erfc(-z) = 2-erfc(z) and z = j [L—n]./kalcb], one can re-
write (B-30) as follows £k

Ja Jar
h _ h _-jkalé] h -jkalé 5. Jkale|
Gpo =T e €h - ;—; e l l Q(jbh ka|¢|)e

=2
‘ka|¢'bh

) (B-30b)
-~ o
Again, in (B-30b) by, = k_hg and a;I = -|ah|.

Comparing (B-19) with (B-30b) reveals that they both are the
same with the exception that the surface wave term in (B-19) is
more accurate than the one in (B-30b). It can be shown that (B-
30b) is the limiting case of (B-19) for swa” impedances (i.e.,
ay is small, B - k). The second term, Gp in (B-27) can easily

be calculated from (B-29), if one recogniz%s that (B~29) can be
rewritten as follows:
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. 1
-Jkale| 2  j= ale|s
h e k 7 1 g d
Gpl ® - l 21’3 I ds e [ 2 ? - B (l-ah a;h)

ks™ aps ay,

. —1 ] (B-31)
F(5+5 k™)

Equation (B-31) can now be evaluated with the aid of a Laplace
transformation table, yielding

h k2 -jkalelf jk o ) d kG";o
Gpl = - i—z e ("L%Ql -3 + 1}""’ 2(1 'ahaa‘;) Joo
ap, Kk h
(8-32)

In obtaining (B-32) from (B-31), the definition of G: in (B-30)

is also used. The explicit form of the derivative in®°(B-21) can
be found by simply differentiating (B-30b) with respect to a:

h
kG 2
d Pot . Jon [Gkalel _-dkaje| ; Jon2l®l  _jkaje|
%h oy |Tap | K Lelel ¥ -
a2
-jkaje|b
O(Jﬁtha|¢|)e M i 20 (B-33)

Comparison of (B-21) and (B-22) with (B-32) and (B-33) reveals
that the latter pair is the special case of the former pair for
small impedances, and larger arc lengths, a|¢|. It can be seen
that in the limit as a|¢” becomes large and a,_ becomes small, which
is the region where the Watson approximation hs valid, the Debye
approximation goes to the Watson approximation smoothly; whereas,
one can not obtain the Debye approximation from the Watson approxi-
mation for small values of a|¢| which is the region where Debye
approximation is valid. Hence, one concludes that the represen-
tation given in part (Ia) is superior to the one given in part (Ib)
of this appendix.

c. Creeping Wave Formulation

Even though one can directly obtain the creeping wave modal
representation for (B-8), it is more convenient for later purposes
to use (B-7) with p=p'=a and ¢'=0 (i.e., both the source point and
the observation point are located on the surface of the impedance
cylinder and arc length is measured from the source point). This
specialized form of ?B-7) is given as follows:

108

g g oa
TV TS TR




(2)
) H\) (ka) eJ"'O' (8-34)

-=-Je HSZ).(ka) + ;ﬂ HSZ)(ka)

As mentioned earlier, the creeping wave modal representation
is valid for large values of arc length, a|¢1 and it is obtained
by evaluating (B-34) via the calculus of residues. To this end,
one would use the Watson approximation for the Hankel functions
in (B-34), leading to

Gh . e‘Jkal¢| TJE ds WZ(O) e'JkO“'Wl

B (8-35)

S > wé(o)-ahmk'rﬁz(o)

where the use of (B-23) is made in the process going from (B-34) to
(B-35). The, location of the poles of the integrand in (B-35) will be
denoted by % and they are the solutions of

w3(0) - aymk " w,(0) = 0. (B-36)

The solution of (B-36) and the extensive numerical tables of the
‘ values of o for different ranges of the parameter &;hm) are given
? elsewhere EB], and they will not be included here for the sake of
brevity. From the calculus of residues, it can be shown that

h
~jo_m|é|
edkalel = P

12 (8-37)
0p+(¢!hmk- )2

p=0

where (B-36) and the differential equation for the Airy function
(i.e., wi(o)- w,(0)=0) 1shused in the process of obtaining (B-37).
One noteg that %he root o_ (1.e., p=0 case) is chosen such that

it corresponds tohthe surface wave for the inductive surface; where-
as, there is no o_ root for the capacitive surface and the summation
in (B-37), for th¥s later case, starts from p=1 (rather than p=0).

I1. TMZ or Magnetic Line Dipole Source Excitation Case

_ The magnetic source density for the TMz case is denoted by
"d’ and it is given by
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Md -¢Md-g-t-)——(-ﬂ

[¢]

where M, is the strength of the source. The tangential magnetic

~

field ggnerated by such a source has only a $-component and it will
be denoted by H¢. H. can be obtained from the z directed electric

field Eg generated by an electric line source T = 2 1 £12-2/C

where I is the strenth of the line source. EI satisfies ?B-Z) and
(B-3) with the exception that Y M is replacedfby Z.1 and a, is sub-
stituted by o  where o  is gjygl in (A-31). E} als8 satisfles the
radiation condition foP an e’¥" time dependenée.

With above changes, (B-4) becomes
El(o'0') = ~3KZ,1 6%(5":0" [0, ) (8-39)

Using the procedure of [26] , one can show that

o (1)
o QH;," ' (ka)
SRR B d“[“il)(kp') D
“ede o) (ka)

H(z)(kp')

+ 1B (kp)e 019" ;0501 (8-40)

where Q = =y + %s
s 3|Ep| k
Actually the term cosv(n-|¢-¢'[)/sinvm of (B-6) is present
in the construction of the complete cylinder Green's function for

the TM_ case. However, only the term j e"j\’lo'¢ | on the right
hand s¥de of (B-6) is of interest in this analysis; this is the
only term which is included in (B-40) just as in (B-7). The case
for p'>p can be obtaifgd from (B-40) by interchanging p and f;.
The magnetic field, Hyé generated by I can be found from VxE,2=-
-jwn Ai*. The electric¢ field, E_z generated by M, of (A-QBE tan
now,Be found from reciprocity tfieorem via the eqﬂation Iz+E=-M

3R as follows d
E':(D.MD'.O) = -MdasGe(o.Mp'.O) p>p* (B-41a)
EZ(p,0]0',0) = Mgk 6%(p,0[p',0) o' >p (8-41b)
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where

u(1)
o-J¢ ' Q_H "/ (ka)
Ge ’ ',0) = k d[H‘l) ko') -—=Y
oralos0) = = [ o (ke oo
Hs’z).(kp)]ﬂf)z)(kp) erdviel; iy (B-42a)
and
e o H{ (ka)
6%(p.9]0',0) = - d Pi(l) kp) -
(p.4]p',0) & I«-je v, (ke) 6;;5?7?;;3
HSZ’(kp)] Hﬁz)'(ko')e'5“|¢| i o' (B-42b)

Equations (B-42a) and (B-42b) can further be simplified for p=a
and p'=a, with the aid of the following wronskin relationship

H(2) (ka)nlD) " (ka) - 1) (kad{ M (ka) = &L, (B-43)
yielding: (2)( )
o-Jje H ka :
68(g*1Q") = - 1 4 v -Jv|¢{;
I 2-1? ‘-rm-je (ﬁ) QSH\, (ka) ¢

0" = lim(p=ave;0)
e+0

B-44

Q' = (p'=a;0) (B-442)

and
(2)
w-je H (ka)
Ge [ 2 o 1 d 'j\’l@l
W L ) G

Q0 = (p=aj¢)

(B-44b)

Q' = 1im (p'=a+e;0)
0
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Making use of the other Maxwell's curl equation, HI=-(jwu°)'1
[7xE+M ], it can be shown that

Ho(oud) = -3kY MG*(0,0] 2,0) (8-45)

where

. . (2):
6%(0,0| 2,0) =i:—5 %TTJ' IJG d ") Hy * (ke

H‘f"(ka)ﬁ?E H(2) (ka)

e'j\’|¢|; p>a (B-46)

the prime over the Hankel function on (B-46) indicates derivative
with respect to the argument. Equation (B-46) is specialized to

the case where the source point is on the surface of the cylinder
such that p'=a and ¢'=0 and the observation point is exterior of

the cylinder (i.e., p>p'=a).

The expression in (B-46) can be represented as a perturbation ;

of the fields on the perfectly conducting cylindrical surface as é
follows:

S . @S 4 S . &

6> = 6: +6) (B-47) '}

where G is the Green's function for the magnetic line dipole source A ;

of (B-33) when this source is placed on a perfectly conducting cylin-
der. G> is obtained from (B-46) upon taking the limit as a tends
to infifiity. Thus,

- (2): *

oje H (ka) . .

GS ) 1 d( v) § -JvIM B-48 . i
c L :"Q.je Ea 4 HVZ (ka) e ( )

Following an analysis which is based on some earlier work by
Hassejian and Ishimaru[l9], and Pathak and Huang [2] one obtains
the following approximation for (B-48):

(2)
Hi%/ (kal¢] ) =
6~ %J 1 kae] l [1 "% e/t v ig e s gz R ..]
(8-49)

112

- R e o Lo R
g e g 2y &
) ' . o e Toskifonded s S

DU - L | . y I 5 o L il : i



{
E’ 63 is the perturbation Green's function and it is given as
f‘ followd:
} 6 .- L T3 4 p (kasa.) [P (ka;0)]72 e3vI0l  (B-50)
: p ﬁ 'w'je (ﬁ v ’aS [\) as ] e

where as before

2
”\().)“‘a) (B-51)
u(2) (ka)+~|((ls- H\(,z)(ka)

P (kaja,) =

One notes that in both (B-48) and (B-50), the observation point,
as well as the source point, is brought on to the surface of the cy-
linder (i.e., p'=p=a).

As in the TE_ case presented in_section I of this appendix,
the perturbation Green's function, GS of (B-50) can also be evalu-
ated asymptotically for the different ranges of the parameters in-
volved via the Debye, Watson and creeping wave representations for
small, moderately small and large values of the arc length, ka|é|,
respectively. In part (Ila) of this appendix, the Debye approxi-
mation of (B-50) is examined. The Watson approximation and the
creeping wave representation of (B-50) is discussed subsequently
in parts (IIb) and (IIc), respectively.

s S

2. Debye Approximation %f

: " The series expansion of P, (ka;as) resulting from the Debye
f approximation can simply be ob¥ainedSfrom (B-15b) by changing ap, E:
to @, which yields ;

P (kasag) ~ —d—— [1 T L__ com, 0(19]
sim+ja k-l 2sin™n sinn+jask v v
S

(B-52a) i

It can also be shown that the term P72(ka;0) in (B-50) has the fol-
lowing form when it is expanded via the Debye approximation:

Po2(ka;0) ~ -sin%[ LA o(lf)] (B-52b)

i sin™n v

where as before cosn=v/ka.
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Substitution of (5-52) into (B-50) and keeping the terms only
up to the order of 1A, leads to

6S. 65 +68 (1)+o(1 ) (B-53)
P™ 7Py Py \K3 [ka]?

= .1 -Jjgale|
-1 d e (8-54)
0 ede i 2feeeleiag]

and

s _k oI 2,2 I-¢2 + 2Jag -jea|
6b <4 L . d( e~JE2(¢]
1 -0o=]g q\k2‘£2)3/2 [sz'E2+jCIS]2
(B-55)

A change of variable (i.e., &= % ) has been introduced in (B-

51) and it is recognized that cosv = v/ka and sinn=.jk2-52/k. Com-
parison of (B-54) and (A-38) reveals that these two equations are
the same as long as one uses the arclength, aj¢| as the distance
between the source and the observation point. This distance was
denoted by | x| in (A-38). Hence the same argument presented in
Appendix 1 can also be used here for the evaluation of (A-38), this
results in

. 2 .
Ja a -JjB.a|¢]| 2 1
" (‘“S)e o '(“—d“_)["”‘zzkawl)-
P s P\ dpaendtt e

2 2a,
- 33 1 (kalo]2z ¢ o(z)] + 2 8(kalo|)egs

(B-56)

where, as in Appendix I,
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R =,’k2+o§; z

a [z
S -
SS == B— ;oo = -|aS| (B-56b)
In order to evaluate G; , one rewrites (B-55) as follows:
1
oje -JEa|e]
gS =K (1 - a9 ) f dg = (B-57)
py 4m s da
1 s/ -e-Je sz-i,2|ﬁ2-§2+jas]

Comparison of (B-17) and (B-57) reveals that the integrals involved
are the same as long as o, in (B-17) is replaced by a,. Hence (B-

2 2
) ) ja a|¢' s -kB a
. o-dkale] 3 kj_ o-Jkale| q(jBSJka|¢|)e s I¢|; ag<0
m

(B-60)
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jssjka|¢| (B-56a)

57) becomes
h
wnere the notation, apra in Gh(a +as) of (B-58) indicates that ap in
6, of (B-19) will be reflaced’by’s 7 Or, more explicitly, (B-58)
)
‘ can be rewritten as
-isgale] , odkafe|
Gs=1 (l-ad)[-Le s e-_be
2 s da /[ B s [
2
-ka|¢|b
ibJkale]) e i (8-59)
The derivative term in (B-58) or in (B-59) can be evaluated with the
aid of (B-22), resulting with
h
kG (a*a_) 2 . .
d Po N ST kag  -iBsale|  Jag [Gia
% duy| Jo, |TWE2lel # 1) gme eg g ek
h




b. Watson Approximation

For moderately small distances from the source, one again em-
ploys the Watson approximation. In order to apply this approxi-
mation, one again starts by approximating the Hankel functions by
the Fock-type Airy functions as in (B-23?. Following the arguments
presented in part (Ib), the Watson approximation for P_(ka; a_)
of (B-51) can be readily written from (B-26) upon chanﬁing ahsto
ags that is

Pkaiag) - - gl e
v s m " JG-ak (m™Jo)*[m™" fo-a k™]

+ 0([I1<a]2)] (8-61)

where ag before c=m'1(v-ka) and 2m3=ka. It can also be simply shown
that Pv (ka;0) has the following form

+

) -1 2 1 1 1
P “(ka;0) . Jo [ 1 - 0 B-52
v (ka;0) (m “Jo) m a + ([ka]z)} ( )

Substitution of (B-61) and (B-52) into (B-50) yields

6S.65 +65 Ly (1 (B-63)
P Po P1 ka [ka]2

where
, _ .
Jkalel 13 i Lsalol
g =8 o l i](_ %n, fds____s___ez (B-64)
Po Ve S5 filkeg
and
. . - 1
s; =%e-ikal¢l_%_j } ds I3+ 23{3/ka K sa|¢|.
! ™ e S[fs+idi/ke
Bl 2 (B-65)

In the process of obtaining (B-64) and (B-65), one employs
. - » \) - -
a change of variable s --32(3 -K); and naturally m 13- hs/k-
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Evaluation of (B-64) via the method of inverse Laplace trans-
formation yields

s . -dklel _d 2y, % fia, /—')
0, T ¢ WhareTy {{wRate e"fc(""[m falel

ja_ 12
-ka|¢|[ S]

(B-66)

TS
Since erfc(-z)=2-erfc(z), and z = j[]:—é Jka|¢|, one can show that
2
o
s

s k
. 3 -jkalé (1 +
_ 3% o 4] 22 .
- ;?‘ s

. . 2
e~Jkalo] 4. l%%a-m [1-22 e Q(z)]} (8-67)

Comparison of QB-67) with the results obtained from the Debye
P

GS
pO

approximation for G> given in (B-56) reveals after some manipu-

lation that (B-56) rfduces to (B-67) for large values of the arc-
length, ka|$| and small values of ag; whereas, one needs to conjecture
t

tha
-jkal¢| _d 2j
(; 3{Eai¢[§ jn&a|¢|)

should be replaced by

(-3 H{?) (kalo))
"7 T wnl

in order to obtain (B-56) from (B-67). (It is noted that the pre-
viou§ expression is the large argument approximation of the latter
one.

Hence, one concludes that (B-56) is a more general result than
(B-67) because (B-56) goes to (B-67) for large values of the arc-
length where (B-67) is valid; whereas, (B-67? does not readily go
to ?B-SG) for small values of the arclength where (B-56) is valid.

In order to evaluate G5 of (B-65), one rewrites the equation
as follows P1
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1
o i 3sa|¢|
GS - -Jka|¢,|(1 _ . d ) 1 J ds &
T S 0) |70 4. E R o

(B-68)

The integrals in (B-28) and (B-68) are the same with the exception
that o, in the former is replaced by a in the latter integral.

Hence, (B-68) becomes:

h
kG, (a.+a )
gS = 1 1- & d [__EQ*_E__E_} (B-69)
pl ZJ S aas Jus *

where the rotation OO in (B-69) indicates that o, in G; of (B-
30b) will be replaced by ag in (B-69) as before. Or more &xplicitly

. ~2
. -jkalé| -kals[b ]
s _1 d -jkalo|, + e3¥ [ S
Gpl = 733 (l-o.s aa—s')[-e 'Gs I Q(Jbs kald|)e

4,20 (B-70)

Comparison of (B-59) and (B-70) reveals that the latter one is
the special case of (B-58) for small values of a_.. One notes that

the derivative term in (B-69) or (B-70) can be oBtained from (B-
33) by changing o, to a.

¢. Creeping Wave Formulation

With both the source and the observation points on the surface
of the cylinder (i.e., p'=0), (B-46) becomes
- - (2)!
J oJe H (ka) .
¢S = _EE 50 d(fg) ( )v T e-3vI0l g 71
~wje 2)! s 4(2
Hv (ka)+F— Hv (ka)

A creeping wave or residue series representation will now be
given for (B-77). In the process of obtaining a residue series

expansion, one uses the Watson approximation of (B-23) into (B-71),
yielding
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juse'jkal¢| =le wy(0)

.= 1.1
M oge wylo)-agnklwy (o)

e°j°m|¢|

(B-72)

The poles of the integrand in (B-72) will be denoted by o> and they
are the roots of following characteristics equation P

wé(cp) - usmk'lwz(op) =0 (B-73)

As indicateg earlier for oh, extensive numerical tables for the
values of g’ for differentpranges of the parameters (asm) are also
given by LoBan[?GU, and they will not be included here’for the sake
of brevity. From the calculus of residues and the differential
equation for the Airy functions (i.e., wg(a)- wz(o)=0), one can
show that

.2 -joim|¢|
6 .. -ikale| ¥ e P (B-74)
s ™ 2k%m 0 o -T)2
p=0 cp-(asmk )

In the TM_ case, o> root (i.e., p=0 case) corresponds to the surface
ggr El1i0f) wave f8r the capacitive surface, whereas, there is no

root for the inductive surface and the summation in (B-74), for
tRis latter case, starts from p=1 (instead of p=0).
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